Alternative rings in which every proper right ideal is maximal
Fundamenta Mathematicae, Tome 116 (1983) no. 3, pp. 165-167.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-116-3-165-167

A. Widiger 1

1
@article{10_4064_fm_116_3_165_167,
     author = {A. Widiger},
     title = {Alternative rings in which every proper right ideal is maximal},
     journal = {Fundamenta Mathematicae},
     pages = {165--167},
     publisher = {mathdoc},
     volume = {116},
     number = {3},
     year = {1983},
     doi = {10.4064/fm-116-3-165-167},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-116-3-165-167/}
}
TY  - JOUR
AU  - A. Widiger
TI  - Alternative rings in which every proper right ideal is maximal
JO  - Fundamenta Mathematicae
PY  - 1983
SP  - 165
EP  - 167
VL  - 116
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-116-3-165-167/
DO  - 10.4064/fm-116-3-165-167
LA  - en
ID  - 10_4064_fm_116_3_165_167
ER  - 
%0 Journal Article
%A A. Widiger
%T Alternative rings in which every proper right ideal is maximal
%J Fundamenta Mathematicae
%D 1983
%P 165-167
%V 116
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-116-3-165-167/
%R 10.4064/fm-116-3-165-167
%G en
%F 10_4064_fm_116_3_165_167
A. Widiger. Alternative rings in which every proper right ideal is maximal. Fundamenta Mathematicae, Tome 116 (1983) no. 3, pp. 165-167. doi : 10.4064/fm-116-3-165-167. http://geodesic.mathdoc.fr/articles/10.4064/fm-116-3-165-167/

Cité par Sources :