On the shape of pointed compact connected subsets of $E^3$
Fundamenta Mathematicae, Tome 115 (1983) no. 3, pp. 163-193.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-115-3-163-193

Andrzej Kadolf 1

1
@article{10_4064_fm_115_3_163_193,
     author = {Andrzej Kadolf},
     title = {On the shape of pointed compact connected subsets of $E^3$},
     journal = {Fundamenta Mathematicae},
     pages = {163--193},
     publisher = {mathdoc},
     volume = {115},
     number = {3},
     year = {1983},
     doi = {10.4064/fm-115-3-163-193},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-115-3-163-193/}
}
TY  - JOUR
AU  - Andrzej Kadolf
TI  - On the shape of pointed compact connected subsets of $E^3$
JO  - Fundamenta Mathematicae
PY  - 1983
SP  - 163
EP  - 193
VL  - 115
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-115-3-163-193/
DO  - 10.4064/fm-115-3-163-193
LA  - en
ID  - 10_4064_fm_115_3_163_193
ER  - 
%0 Journal Article
%A Andrzej Kadolf
%T On the shape of pointed compact connected subsets of $E^3$
%J Fundamenta Mathematicae
%D 1983
%P 163-193
%V 115
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-115-3-163-193/
%R 10.4064/fm-115-3-163-193
%G en
%F 10_4064_fm_115_3_163_193
Andrzej Kadolf. On the shape of pointed compact connected subsets of $E^3$. Fundamenta Mathematicae, Tome 115 (1983) no. 3, pp. 163-193. doi : 10.4064/fm-115-3-163-193. http://geodesic.mathdoc.fr/articles/10.4064/fm-115-3-163-193/

Cité par Sources :