Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_114_2_159_171, author = {Nobuo Aoki}, title = {A group automorphism is a factor of a direct product of a zero entropy automorphism and a {Bernoulli} automorphism}, journal = {Fundamenta Mathematicae}, pages = {159--171}, publisher = {mathdoc}, volume = {114}, number = {2}, year = {1981}, doi = {10.4064/fm-114-2-159-171}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/} }
TY - JOUR AU - Nobuo Aoki TI - A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism JO - Fundamenta Mathematicae PY - 1981 SP - 159 EP - 171 VL - 114 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/ DO - 10.4064/fm-114-2-159-171 LA - en ID - 10_4064_fm_114_2_159_171 ER -
%0 Journal Article %A Nobuo Aoki %T A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism %J Fundamenta Mathematicae %D 1981 %P 159-171 %V 114 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/ %R 10.4064/fm-114-2-159-171 %G en %F 10_4064_fm_114_2_159_171
Nobuo Aoki. A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism. Fundamenta Mathematicae, Tome 114 (1981) no. 2, pp. 159-171. doi : 10.4064/fm-114-2-159-171. http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/
Cité par Sources :