A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism
Fundamenta Mathematicae, Tome 114 (1981) no. 2, pp. 159-171
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
@article{10_4064_fm_114_2_159_171,
author = {Nobuo Aoki},
title = {A group automorphism is a factor of a direct product of a zero entropy automorphism and a {Bernoulli} automorphism},
journal = {Fundamenta Mathematicae},
pages = {159--171},
year = {1981},
volume = {114},
number = {2},
doi = {10.4064/fm-114-2-159-171},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/}
}
TY - JOUR AU - Nobuo Aoki TI - A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism JO - Fundamenta Mathematicae PY - 1981 SP - 159 EP - 171 VL - 114 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/ DO - 10.4064/fm-114-2-159-171 LA - en ID - 10_4064_fm_114_2_159_171 ER -
%0 Journal Article %A Nobuo Aoki %T A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism %J Fundamenta Mathematicae %D 1981 %P 159-171 %V 114 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/fm-114-2-159-171/ %R 10.4064/fm-114-2-159-171 %G en %F 10_4064_fm_114_2_159_171
Nobuo Aoki. A group automorphism is a factor of a direct product of a zero entropy automorphism and a Bernoulli automorphism. Fundamenta Mathematicae, Tome 114 (1981) no. 2, pp. 159-171. doi: 10.4064/fm-114-2-159-171
Cité par Sources :