One-to one Carathéodory representation theorem for multifunctions with uncountable values
Fundamenta Mathematicae, Tome 109 (1980) no. 1, pp. 19-29.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-109-1-19-29

A. Ioffe 1

1
@article{10_4064_fm_109_1_19_29,
     author = {A. Ioffe},
     title = {One-to one {Carath\'eodory} representation theorem for multifunctions with uncountable values},
     journal = {Fundamenta Mathematicae},
     pages = {19--29},
     publisher = {mathdoc},
     volume = {109},
     number = {1},
     year = {1980},
     doi = {10.4064/fm-109-1-19-29},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-109-1-19-29/}
}
TY  - JOUR
AU  - A. Ioffe
TI  - One-to one Carathéodory representation theorem for multifunctions with uncountable values
JO  - Fundamenta Mathematicae
PY  - 1980
SP  - 19
EP  - 29
VL  - 109
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-109-1-19-29/
DO  - 10.4064/fm-109-1-19-29
LA  - en
ID  - 10_4064_fm_109_1_19_29
ER  - 
%0 Journal Article
%A A. Ioffe
%T One-to one Carathéodory representation theorem for multifunctions with uncountable values
%J Fundamenta Mathematicae
%D 1980
%P 19-29
%V 109
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-109-1-19-29/
%R 10.4064/fm-109-1-19-29
%G en
%F 10_4064_fm_109_1_19_29
A. Ioffe. One-to one Carathéodory representation theorem for multifunctions with uncountable values. Fundamenta Mathematicae, Tome 109 (1980) no. 1, pp. 19-29. doi : 10.4064/fm-109-1-19-29. http://geodesic.mathdoc.fr/articles/10.4064/fm-109-1-19-29/

Cité par Sources :