Every compact $T_5$ sequential space is Fréchet
Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 85-90.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-107-2-85-90

V. Kannan 1

1
@article{10_4064_fm_107_2_85_90,
     author = {V. Kannan},
     title = {Every compact $T_5$ sequential space is {Fr\'echet}},
     journal = {Fundamenta Mathematicae},
     pages = {85--90},
     publisher = {mathdoc},
     volume = {107},
     number = {2},
     year = {1980},
     doi = {10.4064/fm-107-2-85-90},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-85-90/}
}
TY  - JOUR
AU  - V. Kannan
TI  - Every compact $T_5$ sequential space is Fréchet
JO  - Fundamenta Mathematicae
PY  - 1980
SP  - 85
EP  - 90
VL  - 107
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-85-90/
DO  - 10.4064/fm-107-2-85-90
LA  - fr
ID  - 10_4064_fm_107_2_85_90
ER  - 
%0 Journal Article
%A V. Kannan
%T Every compact $T_5$ sequential space is Fréchet
%J Fundamenta Mathematicae
%D 1980
%P 85-90
%V 107
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-85-90/
%R 10.4064/fm-107-2-85-90
%G fr
%F 10_4064_fm_107_2_85_90
V. Kannan. Every compact $T_5$ sequential space is Fréchet. Fundamenta Mathematicae, Tome 107 (1980) no. 2, pp. 85-90. doi : 10.4064/fm-107-2-85-90. http://geodesic.mathdoc.fr/articles/10.4064/fm-107-2-85-90/

Cité par Sources :