Fixed points and locally connected cyclic continua in $E^3$
Fundamenta Mathematicae, Tome 107 (1980) no. 1, pp. 1-20.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

DOI : 10.4064/fm-107-1-1-20

Piotr Minc 1

1
@article{10_4064_fm_107_1_1_20,
     author = {Piotr Minc},
     title = {Fixed points and locally connected cyclic continua in $E^3$},
     journal = {Fundamenta Mathematicae},
     pages = {1--20},
     publisher = {mathdoc},
     volume = {107},
     number = {1},
     year = {1980},
     doi = {10.4064/fm-107-1-1-20},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/fm-107-1-1-20/}
}
TY  - JOUR
AU  - Piotr Minc
TI  - Fixed points and locally connected cyclic continua in $E^3$
JO  - Fundamenta Mathematicae
PY  - 1980
SP  - 1
EP  - 20
VL  - 107
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/fm-107-1-1-20/
DO  - 10.4064/fm-107-1-1-20
LA  - en
ID  - 10_4064_fm_107_1_1_20
ER  - 
%0 Journal Article
%A Piotr Minc
%T Fixed points and locally connected cyclic continua in $E^3$
%J Fundamenta Mathematicae
%D 1980
%P 1-20
%V 107
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/fm-107-1-1-20/
%R 10.4064/fm-107-1-1-20
%G en
%F 10_4064_fm_107_1_1_20
Piotr Minc. Fixed points and locally connected cyclic continua in $E^3$. Fundamenta Mathematicae, Tome 107 (1980) no. 1, pp. 1-20. doi : 10.4064/fm-107-1-1-20. http://geodesic.mathdoc.fr/articles/10.4064/fm-107-1-1-20/

Cité par Sources :