Solvability of the functional equation $f=(T-I)h$ for vector-valued functions
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 253-265.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $X$ be a reflexive Banach space and $({\mit \Omega },{\mathcal A},\mu )$ be a probability measure space. Let $T:M(\mu ;X)\rightarrow M(\mu ;X)$ be a linear operator, where $M(\mu ;X)$ is the space of all $X$-valued strongly measurable functions on $({\mit \Omega },{\mathcal A},\mu )$. We assume that $T$ is continuous in the sense that if $(f_{n})$ is a sequence in $M(\mu ;X)$ and $\mathop {\rm lim}_{n\rightarrow \infty } f_{n}=f$ in measure for some $f\in M(\mu ;X)$, then also $\mathop {\rm lim}_{n\rightarrow \infty } Tf_{n}=Tf$ in measure. Then we consider the functional equation $f=(T-I)h$, where $f\in M(\mu ;X)$ is given. We obtain several conditions for the existence of $h\in M(\mu ;X)$ satisfying $f=(T-I)h$.
DOI : 10.4064/cm99-2-9
Keywords: reflexive banach space mit omega mathcal probability measure space rightarrow linear operator where space x valued strongly measurable functions mit omega mathcal assume continuous sense sequence mathop lim rightarrow infty measure mathop lim rightarrow infty measure consider functional equation t i where given obtain several conditions existence satisfying t i

Ryotaro Sato 1

1 Department of Mathematics Okayama University Okayama, 700-8530 Japan
@article{10_4064_cm99_2_9,
     author = {Ryotaro Sato},
     title = {Solvability of the functional equation $f=(T-I)h$
 for vector-valued functions},
     journal = {Colloquium Mathematicum},
     pages = {253--265},
     publisher = {mathdoc},
     volume = {99},
     number = {2},
     year = {2004},
     doi = {10.4064/cm99-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-9/}
}
TY  - JOUR
AU  - Ryotaro Sato
TI  - Solvability of the functional equation $f=(T-I)h$
 for vector-valued functions
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 253
EP  - 265
VL  - 99
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-9/
DO  - 10.4064/cm99-2-9
LA  - en
ID  - 10_4064_cm99_2_9
ER  - 
%0 Journal Article
%A Ryotaro Sato
%T Solvability of the functional equation $f=(T-I)h$
 for vector-valued functions
%J Colloquium Mathematicum
%D 2004
%P 253-265
%V 99
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-9/
%R 10.4064/cm99-2-9
%G en
%F 10_4064_cm99_2_9
Ryotaro Sato. Solvability of the functional equation $f=(T-I)h$
 for vector-valued functions. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 253-265. doi : 10.4064/cm99-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-9/

Cité par Sources :