On some properties of squares of Sierpiński sets
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 221-229
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We investigate some geometrical properties of squares of special Sierpiński sets. In particular, we prove that (under CH) there exists a Sierpiński set $S$ and a function $p \colon \kern .16667em S \to S$ such that the images of the graph of this function under $\pi ^{\prime }(\langle x, y\rangle ) = x - y$ and $\pi ^{\prime \prime }(\langle x, y\rangle ) = x + y$ are both Lusin sets.
Keywords:
investigate geometrical properties squares special sierpi ski sets particular prove under there exists sierpi ski set function colon kern images graph function under prime langle rangle prime prime langle rangle lusin sets
Affiliations des auteurs :
Andrzej Nowik 1
@article{10_4064_cm99_2_7,
author = {Andrzej Nowik},
title = {On some properties of squares of {Sierpi\'nski} sets},
journal = {Colloquium Mathematicum},
pages = {221--229},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2004},
doi = {10.4064/cm99-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-7/}
}
Andrzej Nowik. On some properties of squares of Sierpiński sets. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 221-229. doi: 10.4064/cm99-2-7
Cité par Sources :