Cofiniteness of generalized local cohomology modules
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 283-290
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let ${\mathfrak a}$ denote an ideal of a commutative Noetherian ring $R$,
and
$M$ and $N$ two finitely generated $R$-modules with $\mathop{\rm pd} M
\infty$. It is shown that if either ${\mathfrak a}$ is principal,
or $R$ is complete
local and ${\mathfrak a}$ is a prime ideal with $\dim R/{\mathfrak a}=1$, then the
generalized local cohomology module $H^i_{{\mathfrak a}}(M,N)$ is
$\mathfrak a$-cofinite for all $i \geq 0$. This provides an affirmative
answer to a question proposed in [{13}].
Keywords:
mathfrak denote ideal commutative noetherian ring and finitely generated r modules mathop infty shown either mathfrak principal complete local mathfrak prime ideal dim mathfrak generalized local cohomology module mathfrak mathfrak a cofinite geq provides affirmative answer question proposed
Affiliations des auteurs :
Kamran Divaani-Aazar 1 ; Reza Sazeedeh 2
@article{10_4064_cm99_2_12,
author = {Kamran Divaani-Aazar and Reza Sazeedeh},
title = {Cofiniteness of generalized local cohomology modules},
journal = {Colloquium Mathematicum},
pages = {283--290},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2004},
doi = {10.4064/cm99-2-12},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-12/}
}
TY - JOUR AU - Kamran Divaani-Aazar AU - Reza Sazeedeh TI - Cofiniteness of generalized local cohomology modules JO - Colloquium Mathematicum PY - 2004 SP - 283 EP - 290 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-12/ DO - 10.4064/cm99-2-12 LA - en ID - 10_4064_cm99_2_12 ER -
Kamran Divaani-Aazar; Reza Sazeedeh. Cofiniteness of generalized local cohomology modules. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 283-290. doi: 10.4064/cm99-2-12
Cité par Sources :