Spaces of multipliers and their preduals
for the order multiplication on $[0,1]$. II
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 267-273
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Consider $I=[0,1]$ as a compact topological semigroup with max multiplication and usual topology, and let $C(I),L^{p}(I),1\leq p\leq \infty $, be the associated algebras. The aim of this paper is to study the spaces $\mathop {\rm Hom}\nolimits _{C(I)}(L^{r}(I),L^{p}(I))$, $r>p$, and their preduals.
Keywords:
consider compact topological semigroup max multiplication usual topology leq leq infty associated algebras paper study spaces mathop hom nolimits their preduals
Affiliations des auteurs :
Savita Bhatnagar 1
@article{10_4064_cm99_2_10,
author = {Savita Bhatnagar},
title = {Spaces of multipliers and their preduals
for the order multiplication on $[0,1]$. {II}},
journal = {Colloquium Mathematicum},
pages = {267--273},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2004},
doi = {10.4064/cm99-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-10/}
}
TY - JOUR AU - Savita Bhatnagar TI - Spaces of multipliers and their preduals for the order multiplication on $[0,1]$. II JO - Colloquium Mathematicum PY - 2004 SP - 267 EP - 273 VL - 99 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-10/ DO - 10.4064/cm99-2-10 LA - en ID - 10_4064_cm99_2_10 ER -
%0 Journal Article %A Savita Bhatnagar %T Spaces of multipliers and their preduals for the order multiplication on $[0,1]$. II %J Colloquium Mathematicum %D 2004 %P 267-273 %V 99 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-10/ %R 10.4064/cm99-2-10 %G en %F 10_4064_cm99_2_10
Savita Bhatnagar. Spaces of multipliers and their preduals for the order multiplication on $[0,1]$. II. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 267-273. doi: 10.4064/cm99-2-10
Cité par Sources :