On the Schrödinger heat kernel in horn-shaped domains
Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 145-155
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove pointwise lower bounds for the heat kernel of
Schrödinger semigroups on Euclidean domains under Dirichlet boundary
conditions. The bounds take into account
non-Gaussian corrections for the kernel due to the geometry of
the domain. The results are applied to prove a general lower bound
for the Schrödinger heat kernel in horn-shaped domains without
assuming intrinsic ultracontractivity for the free heat semigroup.
Keywords:
prove pointwise lower bounds heat kernel schr dinger semigroups euclidean domains under dirichlet boundary conditions bounds account non gaussian corrections kernel due geometry domain results applied prove general lower bound schr dinger heat kernel horn shaped domains without assuming intrinsic ultracontractivity heat semigroup
Affiliations des auteurs :
Gabriele Grillo 1
@article{10_4064_cm99_2_1,
author = {Gabriele Grillo},
title = {On the {Schr\"odinger} heat kernel in horn-shaped domains},
journal = {Colloquium Mathematicum},
pages = {145--155},
publisher = {mathdoc},
volume = {99},
number = {2},
year = {2004},
doi = {10.4064/cm99-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-2-1/}
}
Gabriele Grillo. On the Schrödinger heat kernel in horn-shaped domains. Colloquium Mathematicum, Tome 99 (2004) no. 2, pp. 145-155. doi: 10.4064/cm99-2-1
Cité par Sources :