Good-$\lambda $ inequalities for wavelets of compact support
Colloquium Mathematicum, Tome 99 (2004) no. 1, pp. 7-18.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

For a wavelet $\psi $ of compact support, we define a square function $S_{\rm w}$ and a maximal function $N{\mit \Lambda }.$ We then obtain the $L_p$ equivalence of these functions for $0 p \infty $. We show this equivalence by using good-$\lambda $ inequalities.
DOI : 10.4064/cm99-1-2
Keywords: wavelet psi compact support define square function maximal function mit lambda obtain equivalence these functions infty equivalence using good lambda inequalities

Sarah V. Cook 1

1 Department of Mathematics and Statistics Washburn University Topeka, KS 66621, U.S.A.
@article{10_4064_cm99_1_2,
     author = {Sarah V. Cook},
     title = {Good-$\lambda $ inequalities for wavelets of compact support},
     journal = {Colloquium Mathematicum},
     pages = {7--18},
     publisher = {mathdoc},
     volume = {99},
     number = {1},
     year = {2004},
     doi = {10.4064/cm99-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm99-1-2/}
}
TY  - JOUR
AU  - Sarah V. Cook
TI  - Good-$\lambda $ inequalities for wavelets of compact support
JO  - Colloquium Mathematicum
PY  - 2004
SP  - 7
EP  - 18
VL  - 99
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm99-1-2/
DO  - 10.4064/cm99-1-2
LA  - en
ID  - 10_4064_cm99_1_2
ER  - 
%0 Journal Article
%A Sarah V. Cook
%T Good-$\lambda $ inequalities for wavelets of compact support
%J Colloquium Mathematicum
%D 2004
%P 7-18
%V 99
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm99-1-2/
%R 10.4064/cm99-1-2
%G en
%F 10_4064_cm99_1_2
Sarah V. Cook. Good-$\lambda $ inequalities for wavelets of compact support. Colloquium Mathematicum, Tome 99 (2004) no. 1, pp. 7-18. doi : 10.4064/cm99-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm99-1-2/

Cité par Sources :