Towards Bauer's theorem for linear recurrence sequences
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 163-169.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Consider a recurrence sequence $(x_k)_{k\in{\mathbb Z}}$ of integers satisfying $ x_{k+n}=a_{n-1}x_{k+n-1}+\ldots +a_1x_{k+1}+a_0x_k $, where $a_0,a _1,\ldots,a_{n-1}\in{\mathbb Z}$ are fixed and $a_0\in\{-1,1\}$. Assume that $x_k>0$ for all sufficiently large $k$. If there exists $k_0\in{\mathbb Z}$ such that $ x_{k_0}0 $ then for each negative integer $-D$ there exist infinitely many rational primes $q$ such that $q\,|\, x_k$ for some $k\in{\mathbb N}$ and $(\frac{-D}{q})=-1$.
DOI : 10.4064/cm98-2-3
Keywords: consider recurrence sequence mathbb integers satisfying n n ldots where ldots n mathbb fixed assume sufficiently large there exists mathbb each negative integer d there exist infinitely many rational primes mathbb frac d

Mariusz Skałba 1

1 Department of Mathematics, Computer Science and Mechanics University of Warsaw Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm98_2_3,
     author = {Mariusz Ska{\l}ba},
     title = {Towards {Bauer's} theorem for linear
 recurrence sequences},
     journal = {Colloquium Mathematicum},
     pages = {163--169},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2003},
     doi = {10.4064/cm98-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-3/}
}
TY  - JOUR
AU  - Mariusz Skałba
TI  - Towards Bauer's theorem for linear
 recurrence sequences
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 163
EP  - 169
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-3/
DO  - 10.4064/cm98-2-3
LA  - en
ID  - 10_4064_cm98_2_3
ER  - 
%0 Journal Article
%A Mariusz Skałba
%T Towards Bauer's theorem for linear
 recurrence sequences
%J Colloquium Mathematicum
%D 2003
%P 163-169
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-3/
%R 10.4064/cm98-2-3
%G en
%F 10_4064_cm98_2_3
Mariusz Skałba. Towards Bauer's theorem for linear
 recurrence sequences. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 163-169. doi : 10.4064/cm98-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-3/

Cité par Sources :