Towards Bauer's theorem for linear
recurrence sequences
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 163-169
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Consider a recurrence sequence
$(x_k)_{k\in{\mathbb Z}}$ of integers satisfying $
x_{k+n}=a_{n-1}x_{k+n-1}+\ldots +a_1x_{k+1}+a_0x_k $,
where $a_0,a _1,\ldots,a_{n-1}\in{\mathbb Z}$ are fixed
and $a_0\in\{-1,1\}$. Assume
that $x_k>0$ for all sufficiently large $k$.
If
there exists $k_0\in{\mathbb Z}$ such that $ x_{k_0}0 $ then for each
negative integer $-D$ there exist infinitely many rational primes
$q$ such that $q\,|\, x_k$ for some $k\in{\mathbb N}$ and $(\frac{-D}{q})=-1$.
Keywords:
consider recurrence sequence mathbb integers satisfying n n ldots where ldots n mathbb fixed assume sufficiently large there exists mathbb each negative integer d there exist infinitely many rational primes mathbb frac d
Affiliations des auteurs :
Mariusz Skałba 1
@article{10_4064_cm98_2_3,
author = {Mariusz Ska{\l}ba},
title = {Towards {Bauer's} theorem for linear
recurrence sequences},
journal = {Colloquium Mathematicum},
pages = {163--169},
year = {2003},
volume = {98},
number = {2},
doi = {10.4064/cm98-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-3/}
}
Mariusz Skałba. Towards Bauer's theorem for linear recurrence sequences. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 163-169. doi: 10.4064/cm98-2-3
Cité par Sources :