Stable families of analytic sets
Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 277-281.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a different proof of the well-known fact that any uncountable family of analytic subsets of a Polish space with the point-finite intersection property must contain a subfamily whose union is not analytic. Our approach is based on the Kunen–Martin theorem.
DOI : 10.4064/cm98-2-11
Keywords: different proof well known uncountable family analytic subsets polish space point finite intersection property contain subfamily whose union analytic approach based kunen martin theorem

Pandelis Dodos 1

1 National Technical University of Athens Department of Mathematics Zografou Campus 157 80 Athens, Greece
@article{10_4064_cm98_2_11,
     author = {Pandelis Dodos},
     title = {Stable families of analytic sets},
     journal = {Colloquium Mathematicum},
     pages = {277--281},
     publisher = {mathdoc},
     volume = {98},
     number = {2},
     year = {2003},
     doi = {10.4064/cm98-2-11},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-11/}
}
TY  - JOUR
AU  - Pandelis Dodos
TI  - Stable families of analytic sets
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 277
EP  - 281
VL  - 98
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-11/
DO  - 10.4064/cm98-2-11
LA  - en
ID  - 10_4064_cm98_2_11
ER  - 
%0 Journal Article
%A Pandelis Dodos
%T Stable families of analytic sets
%J Colloquium Mathematicum
%D 2003
%P 277-281
%V 98
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-11/
%R 10.4064/cm98-2-11
%G en
%F 10_4064_cm98_2_11
Pandelis Dodos. Stable families of analytic sets. Colloquium Mathematicum, Tome 98 (2003) no. 2, pp. 277-281. doi : 10.4064/cm98-2-11. http://geodesic.mathdoc.fr/articles/10.4064/cm98-2-11/

Cité par Sources :