On stable currents in positively pinched curved hypersurfaces
Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 79-86.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $M^n\, (n\geq 3)$ be an $n$-dimensional complete hypersurface in a real space form $N(c)$ $(c\geq 0)$. We prove that if the sectional curvature $K_M$ of $M$ satisfies the following pinching condition: $c+\delta K_M\leq c+1,$ where $\delta ={1\over 5}$ for $n\geq 4$ and $\delta ={1\over 4}$ for $n=3$, then there are no stable currents (or stable varifolds) in $M$. This is a positive answer to the well-known conjecture of Lawson and Simons.
DOI : 10.4064/cm98-1-6
Keywords: geq n dimensional complete hypersurface real space form geq prove sectional curvature satisfies following pinching condition delta leq where delta geq delta there stable currents stable varifolds positive answer well known conjecture lawson simons

Jintang Li 1

1 Department of Mathematics Xiammen University 361005 Xiammen Fujian, P.R. China
@article{10_4064_cm98_1_6,
     author = {Jintang Li},
     title = {On stable currents in
 positively pinched curved hypersurfaces},
     journal = {Colloquium Mathematicum},
     pages = {79--86},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2003},
     doi = {10.4064/cm98-1-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-6/}
}
TY  - JOUR
AU  - Jintang Li
TI  - On stable currents in
 positively pinched curved hypersurfaces
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 79
EP  - 86
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-6/
DO  - 10.4064/cm98-1-6
LA  - en
ID  - 10_4064_cm98_1_6
ER  - 
%0 Journal Article
%A Jintang Li
%T On stable currents in
 positively pinched curved hypersurfaces
%J Colloquium Mathematicum
%D 2003
%P 79-86
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-6/
%R 10.4064/cm98-1-6
%G en
%F 10_4064_cm98_1_6
Jintang Li. On stable currents in
 positively pinched curved hypersurfaces. Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 79-86. doi : 10.4064/cm98-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-6/

Cité par Sources :