Tame tensor products of algebras
Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 125-145.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

With the help of Galois coverings, we describe the tame tensor products $A \otimes_K B$ of basic, connected, nonsimple, finite-dimensional algebras $A$ and $B$ over an algebraically closed field $K$. In particular, the description of all tame group algebras $A G$ of finite groups $G$ over finite-dimensional algebras $A$ is completed.
DOI : 10.4064/cm98-1-10
Keywords: help galois coverings describe tame tensor products otimes basic connected nonsimple finite dimensional algebras algebraically closed field particular description tame group algebras finite groups finite dimensional algebras completed

Zbigniew Leszczyński 1 ; Andrzej Skowroński 1

1 Faculty of Mathematics and Computer Science Nicolaus Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm98_1_10,
     author = {Zbigniew Leszczy\'nski and Andrzej Skowro\'nski},
     title = {Tame tensor products of algebras},
     journal = {Colloquium Mathematicum},
     pages = {125--145},
     publisher = {mathdoc},
     volume = {98},
     number = {1},
     year = {2003},
     doi = {10.4064/cm98-1-10},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-10/}
}
TY  - JOUR
AU  - Zbigniew Leszczyński
AU  - Andrzej Skowroński
TI  - Tame tensor products of algebras
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 125
EP  - 145
VL  - 98
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-10/
DO  - 10.4064/cm98-1-10
LA  - en
ID  - 10_4064_cm98_1_10
ER  - 
%0 Journal Article
%A Zbigniew Leszczyński
%A Andrzej Skowroński
%T Tame tensor products of algebras
%J Colloquium Mathematicum
%D 2003
%P 125-145
%V 98
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-10/
%R 10.4064/cm98-1-10
%G en
%F 10_4064_cm98_1_10
Zbigniew Leszczyński; Andrzej Skowroński. Tame tensor products of algebras. Colloquium Mathematicum, Tome 98 (2003) no. 1, pp. 125-145. doi : 10.4064/cm98-1-10. http://geodesic.mathdoc.fr/articles/10.4064/cm98-1-10/

Cité par Sources :