Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian
Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 221-231.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We present two results on existence of infinitely many positive solutions to the Neumann problem $$ \cases{ -{\mit\Delta}_p u+\lambda(x)|u|^{p-2}u = \mu f(x,u) {\rm in}\ {\mit\Omega},\cr \partial u/\partial \nu=0 {\rm on}\ \partial{\mit\Omega},\cr} $$ where ${\mit\Omega} \subset {\mathbb R}^N$ is a bounded open set with sufficiently smooth boundary $\partial {\mit\Omega}$, $\nu$ is the outer unit normal vector to $\partial {\mit\Omega}$, $p>1$, $\mu>0$, $\lambda\in L^\infty({\mit\Omega})$ with $\mathop{\rm ess\,inf}_{x\in{\mit\Omega}}\lambda(x)>0$ and $f:{\mit\Omega}\times{\mathbb R}\rightarrow{\mathbb R}$ is a Carathéodory function. Our results ensure the existence of a sequence of nonzero and nonnegative weak solutions to the above problem.
DOI : 10.4064/cm97-2-8
Keywords: present results existence infinitely many positive solutions neumann problem cases mit delta lambda p mit omega partial partial partial mit omega where mit omega subset mathbb bounded set sufficiently smooth boundary partial mit omega outer unit normal vector partial mit omega lambda infty mit omega mathop ess inf mit omega lambda mit omega times mathbb rightarrow mathbb carath odory function results ensure existence sequence nonzero nonnegative weak solutions above problem

Giovanni Anello 1 ; Giuseppe Cordaro 1

1 Department of Mathematics University of Messina 98166 Sant'Agata-Messina, Italy
@article{10_4064_cm97_2_8,
     author = {Giovanni Anello and Giuseppe Cordaro},
     title = {Infinitely many positive solutions for
 the {Neumann} problem involving the $p${-Laplacian}},
     journal = {Colloquium Mathematicum},
     pages = {221--231},
     publisher = {mathdoc},
     volume = {97},
     number = {2},
     year = {2003},
     doi = {10.4064/cm97-2-8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/}
}
TY  - JOUR
AU  - Giovanni Anello
AU  - Giuseppe Cordaro
TI  - Infinitely many positive solutions for
 the Neumann problem involving the $p$-Laplacian
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 221
EP  - 231
VL  - 97
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/
DO  - 10.4064/cm97-2-8
LA  - en
ID  - 10_4064_cm97_2_8
ER  - 
%0 Journal Article
%A Giovanni Anello
%A Giuseppe Cordaro
%T Infinitely many positive solutions for
 the Neumann problem involving the $p$-Laplacian
%J Colloquium Mathematicum
%D 2003
%P 221-231
%V 97
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/
%R 10.4064/cm97-2-8
%G en
%F 10_4064_cm97_2_8
Giovanni Anello; Giuseppe Cordaro. Infinitely many positive solutions for
 the Neumann problem involving the $p$-Laplacian. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 221-231. doi : 10.4064/cm97-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/

Cité par Sources :