Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Giovanni Anello 1 ; Giuseppe Cordaro 1
@article{10_4064_cm97_2_8, author = {Giovanni Anello and Giuseppe Cordaro}, title = {Infinitely many positive solutions for the {Neumann} problem involving the $p${-Laplacian}}, journal = {Colloquium Mathematicum}, pages = {221--231}, publisher = {mathdoc}, volume = {97}, number = {2}, year = {2003}, doi = {10.4064/cm97-2-8}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/} }
TY - JOUR AU - Giovanni Anello AU - Giuseppe Cordaro TI - Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian JO - Colloquium Mathematicum PY - 2003 SP - 221 EP - 231 VL - 97 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/ DO - 10.4064/cm97-2-8 LA - en ID - 10_4064_cm97_2_8 ER -
%0 Journal Article %A Giovanni Anello %A Giuseppe Cordaro %T Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian %J Colloquium Mathematicum %D 2003 %P 221-231 %V 97 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/ %R 10.4064/cm97-2-8 %G en %F 10_4064_cm97_2_8
Giovanni Anello; Giuseppe Cordaro. Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 221-231. doi : 10.4064/cm97-2-8. http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/
Cité par Sources :