Infinitely many positive solutions for
the Neumann problem involving the $p$-Laplacian
Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 221-231
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We present two results on
existence of infinitely
many positive solutions to the Neumann problem
$$
\cases{
-{\mit\Delta}_p u+\lambda(x)|u|^{p-2}u
= \mu f(x,u)
{\rm in}\ {\mit\Omega},\cr
\partial u/\partial \nu=0
{\rm on}\ \partial{\mit\Omega},\cr}
$$
where ${\mit\Omega} \subset {\mathbb R}^N$
is a bounded open set
with sufficiently smooth boundary $\partial {\mit\Omega}$, $\nu$
is the outer unit normal vector to $\partial {\mit\Omega}$,
$p>1$, $\mu>0$, $\lambda\in L^\infty({\mit\Omega})$ with
$\mathop{\rm ess\,inf}_{x\in{\mit\Omega}}\lambda(x)>0$ and
$f:{\mit\Omega}\times{\mathbb R}\rightarrow{\mathbb R}$ is a
Carathéodory function. Our results ensure the existence of a
sequence of nonzero and nonnegative weak solutions to the
above problem.
Keywords:
present results existence infinitely many positive solutions neumann problem cases mit delta lambda p mit omega partial partial partial mit omega where mit omega subset mathbb bounded set sufficiently smooth boundary partial mit omega outer unit normal vector partial mit omega lambda infty mit omega mathop ess inf mit omega lambda mit omega times mathbb rightarrow mathbb carath odory function results ensure existence sequence nonzero nonnegative weak solutions above problem
Affiliations des auteurs :
Giovanni Anello 1 ; Giuseppe Cordaro 1
@article{10_4064_cm97_2_8,
author = {Giovanni Anello and Giuseppe Cordaro},
title = {Infinitely many positive solutions for
the {Neumann} problem involving the $p${-Laplacian}},
journal = {Colloquium Mathematicum},
pages = {221--231},
year = {2003},
volume = {97},
number = {2},
doi = {10.4064/cm97-2-8},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/}
}
TY - JOUR AU - Giovanni Anello AU - Giuseppe Cordaro TI - Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian JO - Colloquium Mathematicum PY - 2003 SP - 221 EP - 231 VL - 97 IS - 2 UR - http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/ DO - 10.4064/cm97-2-8 LA - en ID - 10_4064_cm97_2_8 ER -
%0 Journal Article %A Giovanni Anello %A Giuseppe Cordaro %T Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian %J Colloquium Mathematicum %D 2003 %P 221-231 %V 97 %N 2 %U http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-8/ %R 10.4064/cm97-2-8 %G en %F 10_4064_cm97_2_8
Giovanni Anello; Giuseppe Cordaro. Infinitely many positive solutions for the Neumann problem involving the $p$-Laplacian. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 221-231. doi: 10.4064/cm97-2-8
Cité par Sources :