Endomorphism rings of regular modules over
wild hereditary algebras
Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 207-220
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $H$ be a connected wild hereditary path algebra. We prove that if $Z$ is a quasi-simple regular brick, and $[r]Z$ indecomposable regular of quasi-length $r$ and with quasi-top $Z$, then $\mathop
{\rm rad}\nolimits ^r\mathop {{\rm End}_H}\nolimits ([r]Z) =0$.
Keywords:
connected wild hereditary path algebra prove quasi simple regular brick indecomposable regular quasi length quasi top mathop rad nolimits mathop end nolimits
Affiliations des auteurs :
Otto Kerner 1
@article{10_4064_cm97_2_7,
author = {Otto Kerner},
title = {Endomorphism rings of regular modules over
wild hereditary algebras},
journal = {Colloquium Mathematicum},
pages = {207--220},
year = {2003},
volume = {97},
number = {2},
doi = {10.4064/cm97-2-7},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-7/}
}
Otto Kerner. Endomorphism rings of regular modules over wild hereditary algebras. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 207-220. doi: 10.4064/cm97-2-7
Cité par Sources :