Lifts for semigroups of monomorphisms
of an independence algebra
Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 277-284
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
For a universal algebra ${\cal A}$, let $\mathop{\rm End}\nolimits ({\cal A} )$ and $\mathop{\rm Aut}\nolimits ({\cal
A} )$ denote, respectively, the endomorphism monoid and the automorphism
group of ${\cal A}$. Let $S$ be a semigroup and let $T$ be a
characteristic subsemigroup of $S$. We say that $\phi \in \mathop{\rm Aut}\nolimits (S)$ is a
lift for $\psi\in \mathop{\rm Aut}\nolimits (T)$ if $\phi|T=\psi$. For $\psi \in \mathop{\rm Aut}\nolimits (T)$ we
denote by $L(\psi)$ the set of lifts of $\psi$, that is,
$
L(\psi )= \{\phi \in \mathop{\rm Aut}\nolimits (S) \mid \phi|T=\psi\}.
$
Let ${\cal A}$ be an independence algebra of infinite rank and let $S$
be a monoid of monomorphisms such that $G=\mathop{\rm Aut}\nolimits ({\cal A} )\leq S \leq
\mathop{\rm End}\nolimits ({\cal A} )$. In
[2] it is proved that if ${\cal A}$ is a set
(that is, an algebra without operations), then $|L(\phi)|= 1$. The
analogous result for vector spaces does not hold. Thus the natural
question is: Characterize the independence algebras in
which $|L(\phi)|=1$. The aim of this note is to answer this
question.
Keywords:
universal algebra cal mathop end nolimits cal mathop aut nolimits cal denote respectively endomorphism monoid automorphism group nbsp cal nbsp semigroup characteristic subsemigroup nbsp say phi mathop aut nolimits lift psi mathop aut nolimits phi psi psi mathop aut nolimits denote psi set lifts nbsp psi psi phi mathop aut nolimits mid phi psi cal independence algebra infinite rank nbsp monoid monomorphisms mathop aut nolimits cal leq leq mathop end nolimits cal nbsp proved cal set algebra without operations phi analogous result vector spaces does natural question characterize independence algebras which phi note answer question
Affiliations des auteurs :
João Araújo 1
@article{10_4064_cm97_2_11,
author = {Jo\~ao Ara\'ujo},
title = {Lifts for semigroups of monomorphisms
of an independence algebra},
journal = {Colloquium Mathematicum},
pages = {277--284},
publisher = {mathdoc},
volume = {97},
number = {2},
year = {2003},
doi = {10.4064/cm97-2-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-11/}
}
TY - JOUR AU - João Araújo TI - Lifts for semigroups of monomorphisms of an independence algebra JO - Colloquium Mathematicum PY - 2003 SP - 277 EP - 284 VL - 97 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm97-2-11/ DO - 10.4064/cm97-2-11 LA - en ID - 10_4064_cm97_2_11 ER -
João Araújo. Lifts for semigroups of monomorphisms of an independence algebra. Colloquium Mathematicum, Tome 97 (2003) no. 2, pp. 277-284. doi: 10.4064/cm97-2-11
Cité par Sources :