On free subgroups of units in quaternion algebras II
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 29-32.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $A\subseteq {\mathbb Q}$ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra ${\rm H}(A)$ to units of certain rings of generalized quaternions ${\rm H}(A,a,b)=\left ({-a,-b\over A}\right ),$ where $a,b\in A.$ Next we show that there is an algebra embedding of the ring ${\rm H}(A,a,b)$ into the algebra of standard Cayley numbers over $A.$ Using this embedding we answer a question asked in the first part of this paper.
DOI : 10.4064/cm97-1-4
Keywords: subseteq mathbb subring extend earlier results unit groups standard quaternion algebra units certain rings generalized quaternions a b right where there algebra embedding ring algebra standard cayley numbers using embedding answer question asked first part paper

Jan Krempa 1

1 Institute of Mathematics Warsaw University Banacha 2 02-097 Warszawa, Poland
@article{10_4064_cm97_1_4,
     author = {Jan Krempa},
     title = {On free subgroups of units in quaternion algebras {II}},
     journal = {Colloquium Mathematicum},
     pages = {29--32},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2003},
     doi = {10.4064/cm97-1-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-4/}
}
TY  - JOUR
AU  - Jan Krempa
TI  - On free subgroups of units in quaternion algebras II
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 29
EP  - 32
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-4/
DO  - 10.4064/cm97-1-4
LA  - en
ID  - 10_4064_cm97_1_4
ER  - 
%0 Journal Article
%A Jan Krempa
%T On free subgroups of units in quaternion algebras II
%J Colloquium Mathematicum
%D 2003
%P 29-32
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-4/
%R 10.4064/cm97-1-4
%G en
%F 10_4064_cm97_1_4
Jan Krempa. On free subgroups of units in quaternion algebras II. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 29-32. doi : 10.4064/cm97-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-4/

Cité par Sources :