On free subgroups of units in quaternion algebras II
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 29-32
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Let $A\subseteq {\mathbb Q}$ be any subring. We extend our earlier results on unit groups of the standard
quaternion algebra
${\rm H}(A)$ to units of certain rings of generalized quaternions
${\rm H}(A,a,b)=\left ({-a,-b\over A}\right ),$ where $a,b\in A.$ Next we show that there is an algebra embedding of the ring
${\rm H}(A,a,b)$ into the algebra of standard Cayley numbers over $A.$ Using this embedding we answer a question asked in the first part of this paper.
Keywords:
subseteq mathbb subring extend earlier results unit groups standard quaternion algebra units certain rings generalized quaternions a b right where there algebra embedding ring algebra standard cayley numbers using embedding answer question asked first part paper
Affiliations des auteurs :
Jan Krempa 1
@article{10_4064_cm97_1_4,
author = {Jan Krempa},
title = {On free subgroups of units in quaternion algebras {II}},
journal = {Colloquium Mathematicum},
pages = {29--32},
year = {2003},
volume = {97},
number = {1},
doi = {10.4064/cm97-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-4/}
}
Jan Krempa. On free subgroups of units in quaternion algebras II. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 29-32. doi: 10.4064/cm97-1-4
Cité par Sources :