Vector-valued ergodic theorems
for multiparameter Additive processes II
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 117-129
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
Previously we obtained stochastic and pointwise ergodic theorems
for a continuous $d$-parameter additive process $F$ in
$L_{1}(({\mit\Omega},{\mit\Sigma},\mu);X)$, where $X$ is a reflexive Banach
space, under the condition that $F$ is bounded. In this paper we
improve the previous results by considering the weaker
condition that the function $W(\cdot)= \mathop{\rm ess\,sup}
\{ \|F(I)(\cdot)\| : I\subset [0, 1)^{d}\}$ is
integrable on ${\mit\Omega}$.
Keywords:
previously obtained stochastic pointwise ergodic theorems continuous d parameter additive process mit omega mit sigma where reflexive banach space under condition bounded paper improve previous results considering weaker condition function cdot mathop ess sup cdot subset integrable mit omega
Affiliations des auteurs :
Ryotaro Sato 1
@article{10_4064_cm97_1_11,
author = {Ryotaro Sato},
title = {Vector-valued ergodic theorems
for multiparameter {Additive} processes {II}},
journal = {Colloquium Mathematicum},
pages = {117--129},
year = {2003},
volume = {97},
number = {1},
doi = {10.4064/cm97-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-11/}
}
Ryotaro Sato. Vector-valued ergodic theorems for multiparameter Additive processes II. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 117-129. doi: 10.4064/cm97-1-11
Cité par Sources :