Convergence of sequences of iterates of random-valued vector functions
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 1-6.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Given a probability space $({\mit \Omega },{{\mathcal A}},P)$ and a closed subset $X$ of a Banach lattice, we consider functions $f:X\times {\mit \Omega }\to X$ and their iterates $f^n:X\times {\mit \Omega }^{{{\mathbb N}}}\to X$ defined by $f^1(x,\omega )=f(x,\omega _1)$, $f^{n+1}(x,\omega )=f(f^n(x,\omega ),\omega _{n+1})$, and obtain theorems on the convergence (a.s. and in $L^1$) of the sequence $(f^n(x,\cdot ))$.
DOI : 10.4064/cm97-1-1
Keywords: given probability space mit omega mathcal closed subset banach lattice consider functions times mit omega their iterates times mit omega mathbb defined omega omega omega x omega omega obtain theorems convergence sequence cdot

Rafał Kapica 1

1 Institute of Mathematics Silesian University Bankowa 14 40-007 Katowice, Poland
@article{10_4064_cm97_1_1,
     author = {Rafa{\l} Kapica},
     title = {Convergence of sequences of iterates
 of random-valued vector functions},
     journal = {Colloquium Mathematicum},
     pages = {1--6},
     publisher = {mathdoc},
     volume = {97},
     number = {1},
     year = {2003},
     doi = {10.4064/cm97-1-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-1/}
}
TY  - JOUR
AU  - Rafał Kapica
TI  - Convergence of sequences of iterates
 of random-valued vector functions
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 1
EP  - 6
VL  - 97
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-1/
DO  - 10.4064/cm97-1-1
LA  - en
ID  - 10_4064_cm97_1_1
ER  - 
%0 Journal Article
%A Rafał Kapica
%T Convergence of sequences of iterates
 of random-valued vector functions
%J Colloquium Mathematicum
%D 2003
%P 1-6
%V 97
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-1/
%R 10.4064/cm97-1-1
%G en
%F 10_4064_cm97_1_1
Rafał Kapica. Convergence of sequences of iterates
 of random-valued vector functions. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 1-6. doi : 10.4064/cm97-1-1. http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-1/

Cité par Sources :