Convergence of sequences of iterates
of random-valued vector functions
Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 1-6
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Given a probability space $({\mit \Omega },{{\mathcal A}},P)$ and a closed subset $X$ of a Banach lattice, we consider functions $f:X\times {\mit \Omega }\to X$ and their iterates $f^n:X\times {\mit \Omega }^{{{\mathbb N}}}\to X$ defined by
$f^1(x,\omega )=f(x,\omega _1)$, $f^{n+1}(x,\omega )=f(f^n(x,\omega ),\omega _{n+1})$, and obtain theorems on the convergence (a.s. and in $L^1$) of the sequence $(f^n(x,\cdot ))$.
Keywords:
given probability space mit omega mathcal closed subset banach lattice consider functions times mit omega their iterates times mit omega mathbb defined omega omega omega x omega omega obtain theorems convergence sequence cdot
Affiliations des auteurs :
Rafał Kapica 1
@article{10_4064_cm97_1_1,
author = {Rafa{\l} Kapica},
title = {Convergence of sequences of iterates
of random-valued vector functions},
journal = {Colloquium Mathematicum},
pages = {1--6},
publisher = {mathdoc},
volume = {97},
number = {1},
year = {2003},
doi = {10.4064/cm97-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-1/}
}
TY - JOUR AU - Rafał Kapica TI - Convergence of sequences of iterates of random-valued vector functions JO - Colloquium Mathematicum PY - 2003 SP - 1 EP - 6 VL - 97 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm97-1-1/ DO - 10.4064/cm97-1-1 LA - en ID - 10_4064_cm97_1_1 ER -
Rafał Kapica. Convergence of sequences of iterates of random-valued vector functions. Colloquium Mathematicum, Tome 97 (2003) no. 1, pp. 1-6. doi: 10.4064/cm97-1-1
Cité par Sources :