Selfinjective algebras of wild canonical type
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 245-275
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We develop the representation theory of selfinjective
algebras which admit Galois coverings by the repetitive
algebras of algebras whose derived category of bounded
complexes of finite-dimensional modules is equivalent to
the derived category of coherent sheaves on a weighted
projective line with virtual genus greater than one.
Keywords:
develop representation theory selfinjective algebras which admit galois coverings repetitive algebras algebras whose derived category bounded complexes finite dimensional modules equivalent derived category coherent sheaves weighted projective line virtual genus greater
Affiliations des auteurs :
Helmut Lenzing 1 ; Andrzej Skowroński 2
@article{10_4064_cm96_2_9,
author = {Helmut Lenzing and Andrzej Skowro\'nski},
title = {Selfinjective algebras of wild canonical type},
journal = {Colloquium Mathematicum},
pages = {245--275},
year = {2003},
volume = {96},
number = {2},
doi = {10.4064/cm96-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-9/}
}
Helmut Lenzing; Andrzej Skowroński. Selfinjective algebras of wild canonical type. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 245-275. doi: 10.4064/cm96-2-9
Cité par Sources :