Note on a hypothesis implying the
non-vanishing of Dirichlet $L$-series
$L(s,\chi )$ for $s>0$ and real characters $\chi $
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 207-212
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove that if $\chi $ is a real non-principal Dirichlet character for which $L(1,\chi )\le 1-\mathop {\rm log}\nolimits 2$, then Chowla's hypothesis is not satisfied and we cannot use Chowla's method for proving that $L(s,\chi )>0$ for $s>0$.
Keywords:
prove chi real non principal dirichlet character which chi mathop log nolimits chowlas hypothesis satisfied cannot chowlas method proving chi
Affiliations des auteurs :
Stéphane R. Louboutin 1
@article{10_4064_cm96_2_5,
author = {St\'ephane R. Louboutin},
title = {Note on a hypothesis implying the
non-vanishing of {Dirichlet} $L$-series
$L(s,\chi )$ for $s>0$ and real characters $\chi $},
journal = {Colloquium Mathematicum},
pages = {207--212},
publisher = {mathdoc},
volume = {96},
number = {2},
year = {2003},
doi = {10.4064/cm96-2-5},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/}
}
TY - JOUR AU - Stéphane R. Louboutin TI - Note on a hypothesis implying the non-vanishing of Dirichlet $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $ JO - Colloquium Mathematicum PY - 2003 SP - 207 EP - 212 VL - 96 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/ DO - 10.4064/cm96-2-5 LA - en ID - 10_4064_cm96_2_5 ER -
%0 Journal Article %A Stéphane R. Louboutin %T Note on a hypothesis implying the non-vanishing of Dirichlet $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $ %J Colloquium Mathematicum %D 2003 %P 207-212 %V 96 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/ %R 10.4064/cm96-2-5 %G en %F 10_4064_cm96_2_5
Stéphane R. Louboutin. Note on a hypothesis implying the non-vanishing of Dirichlet $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 207-212. doi: 10.4064/cm96-2-5
Cité par Sources :