Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Stéphane R. Louboutin 1
@article{10_4064_cm96_2_5, author = {St\'ephane R. Louboutin}, title = {Note on a hypothesis implying the non-vanishing of {Dirichlet} $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $}, journal = {Colloquium Mathematicum}, pages = {207--212}, publisher = {mathdoc}, volume = {96}, number = {2}, year = {2003}, doi = {10.4064/cm96-2-5}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/} }
TY - JOUR AU - Stéphane R. Louboutin TI - Note on a hypothesis implying the non-vanishing of Dirichlet $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $ JO - Colloquium Mathematicum PY - 2003 SP - 207 EP - 212 VL - 96 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/ DO - 10.4064/cm96-2-5 LA - en ID - 10_4064_cm96_2_5 ER -
%0 Journal Article %A Stéphane R. Louboutin %T Note on a hypothesis implying the non-vanishing of Dirichlet $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $ %J Colloquium Mathematicum %D 2003 %P 207-212 %V 96 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/ %R 10.4064/cm96-2-5 %G en %F 10_4064_cm96_2_5
Stéphane R. Louboutin. Note on a hypothesis implying the non-vanishing of Dirichlet $L$-series $L(s,\chi )$ for $s>0$ and real characters $\chi $. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 207-212. doi : 10.4064/cm96-2-5. http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-5/
Cité par Sources :