Products of factorials modulo $p$
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 191-205.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that if $p\ne 5$ is a prime, then the numbers $$ \left\{{1 \over p} \left({p\atop {m_1,\dots,m_t}}\right) \biggm| t\ge 1,\, m_i\ge 0\ \hbox{for}\ i=1,\dots,t \ \hbox{and}~\sum_{i=1}^t m_i=p\right\} $$ cover all the nonzero residue classes modulo $p$.
DOI : 10.4064/cm96-2-4
Keywords: prime numbers atop dots right biggm hbox dots hbox sum p right cover nonzero residue classes modulo

Florian Luca 1 ; Pantelimon Stănică 2

1 IMATE, UNAM Ap. Postal 61-3 (Xangari), CP. 58 089 Morelia, Michoacán, Mexico
2 Department of Mathematics Auburn University Montgomery Montgomery, AL 36124-4023, U.S.A.
@article{10_4064_cm96_2_4,
     author = {Florian Luca and Pantelimon St\u{a}nic\u{a}},
     title = {Products of factorials modulo $p$},
     journal = {Colloquium Mathematicum},
     pages = {191--205},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2003},
     doi = {10.4064/cm96-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-4/}
}
TY  - JOUR
AU  - Florian Luca
AU  - Pantelimon Stănică
TI  - Products of factorials modulo $p$
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 191
EP  - 205
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-4/
DO  - 10.4064/cm96-2-4
LA  - en
ID  - 10_4064_cm96_2_4
ER  - 
%0 Journal Article
%A Florian Luca
%A Pantelimon Stănică
%T Products of factorials modulo $p$
%J Colloquium Mathematicum
%D 2003
%P 191-205
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-4/
%R 10.4064/cm96-2-4
%G en
%F 10_4064_cm96_2_4
Florian Luca; Pantelimon Stănică. Products of factorials modulo $p$. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 191-205. doi : 10.4064/cm96-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-4/

Cité par Sources :