Products of factorials modulo $p$
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 191-205
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that if $p\ne 5$
is a prime, then the numbers
$$
\left\{{1 \over p}
\left({p\atop {m_1,\dots,m_t}}\right)
\biggm| t\ge 1,\, m_i\ge 0\ \hbox{for}\ i=1,\dots,t
\ \hbox{and}~\sum_{i=1}^t m_i=p\right\}
$$
cover all the nonzero residue
classes modulo $p$.
Keywords:
prime numbers atop dots right biggm hbox dots hbox sum p right cover nonzero residue classes modulo
Affiliations des auteurs :
Florian Luca 1 ; Pantelimon Stănică 2
@article{10_4064_cm96_2_4,
author = {Florian Luca and Pantelimon St\u{a}nic\u{a}},
title = {Products of factorials modulo $p$},
journal = {Colloquium Mathematicum},
pages = {191--205},
publisher = {mathdoc},
volume = {96},
number = {2},
year = {2003},
doi = {10.4064/cm96-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-4/}
}
Florian Luca; Pantelimon Stănică. Products of factorials modulo $p$. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 191-205. doi: 10.4064/cm96-2-4
Cité par Sources :