Linear liftings of affinors to Weil bundles
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 179-189.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We give a classification of all linear natural operators transforming affinors on each $n$-dimensional manifold $M$ into affinors on $T^AM,$ where $T^A$ is the product preserving bundle functor given by a Weil algebra $A$, under the condition that $n\ge 2$.
DOI : 10.4064/cm96-2-3
Keywords: classification linear natural operators transforming affinors each n dimensional manifold affinors where product preserving bundle functor given weil algebra under condition

Jacek Dębecki 1

1 Institute of Mathematics Jagiellonian University Reymonta 4 30-059 Kraków, Poland
@article{10_4064_cm96_2_3,
     author = {Jacek D\k{e}becki},
     title = {Linear liftings of affinors to {Weil} bundles},
     journal = {Colloquium Mathematicum},
     pages = {179--189},
     publisher = {mathdoc},
     volume = {96},
     number = {2},
     year = {2003},
     doi = {10.4064/cm96-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-3/}
}
TY  - JOUR
AU  - Jacek Dębecki
TI  - Linear liftings of affinors to Weil bundles
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 179
EP  - 189
VL  - 96
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-3/
DO  - 10.4064/cm96-2-3
LA  - en
ID  - 10_4064_cm96_2_3
ER  - 
%0 Journal Article
%A Jacek Dębecki
%T Linear liftings of affinors to Weil bundles
%J Colloquium Mathematicum
%D 2003
%P 179-189
%V 96
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-3/
%R 10.4064/cm96-2-3
%G en
%F 10_4064_cm96_2_3
Jacek Dębecki. Linear liftings of affinors to Weil bundles. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 179-189. doi : 10.4064/cm96-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-3/

Cité par Sources :