Estimates for maximal singular integrals
Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 167-177
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is shown that maximal truncations of nonconvolution $L^2$-bounded singular integral operators with kernels satisfying Hörmander's condition are weak type $(1,1)$ and $L^p$-bounded for $1 p \infty $. Under stronger smoothness conditions, such estimates can be obtained using a generalization of Cotlar's inequality. This inequality is not applicable here and the point of this article is to treat the boundedness of such maximal singular integral operators in an alternative way.
Keywords:
shown maximal truncations nonconvolution bounded singular integral operators kernels satisfying rmanders condition weak type p bounded infty under stronger smoothness conditions estimates obtained using generalization cotlars inequality inequality applicable here point article treat boundedness maximal singular integral operators alternative
Affiliations des auteurs :
Loukas Grafakos 1
@article{10_4064_cm96_2_2,
author = {Loukas Grafakos},
title = {Estimates for maximal singular integrals},
journal = {Colloquium Mathematicum},
pages = {167--177},
year = {2003},
volume = {96},
number = {2},
doi = {10.4064/cm96-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-2-2/}
}
Loukas Grafakos. Estimates for maximal singular integrals. Colloquium Mathematicum, Tome 96 (2003) no. 2, pp. 167-177. doi: 10.4064/cm96-2-2
Cité par Sources :