Équidistribution presque partout modulo 1 de suites oscillantes perturbées – II : cas liouvillien unidimensionnel
Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 55-73.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We extend the results on uniform distribution modulo 1 given in [3] to sequences of the form $(t(h_nF(n{\mit \Theta })+\varepsilon _nh'_n))_n$, where $(h_n)_n$, $(h'_n)_n$ and $(h_n/h'_n)_n$ are polynomially increasing sequences, $(\varepsilon _n)_n$ a bounded sequence, $F$~: ${\mathbb R}\rightarrow {\mathbb R}$ essentially a $1$-periodic $C^3$ function, ${\mit \Theta }$ and $t$ real numbers (the case $F$~: ${\mathbb R}^d\rightarrow {\mathbb R}$ and ${\mit \Theta }\in {\mathbb R}^d$ for $d>1$ will be treated in a separate article). We remove the diophantine hypothesis on ${\mit \Theta }$ needed in [3], and add a technical hypothesis on $h_n$.
DOI : 10.4064/cm96-1-6
Mots-clés : extend results uniform distribution modulo given sequences form mit theta varepsilon where n polynomially increasing sequences varepsilon bounded sequence mathbb rightarrow mathbb essentially periodic function mit theta real numbers mathbb rightarrow mathbb mit theta mathbb treated separate article remove diophantine hypothesis mit theta needed technical hypothesis

Benoît Rittaud 1

1 Laboratoire d'Analyse, Géométrie et Applications Institut Galilée Université Paris 13 av. J.-B. Clément 93430 Villetaneuse, France
@article{10_4064_cm96_1_6,
     author = {Beno{\^\i}t Rittaud},
     title = {\'Equidistribution presque partout modulo 1 de
 suites oscillantes perturb\'ees {\textendash} {II} :
 cas liouvillien unidimensionnel},
     journal = {Colloquium Mathematicum},
     pages = {55--73},
     publisher = {mathdoc},
     volume = {96},
     number = {1},
     year = {2003},
     doi = {10.4064/cm96-1-6},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-6/}
}
TY  - JOUR
AU  - Benoît Rittaud
TI  - Équidistribution presque partout modulo 1 de
 suites oscillantes perturbées – II :
 cas liouvillien unidimensionnel
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 55
EP  - 73
VL  - 96
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-6/
DO  - 10.4064/cm96-1-6
LA  - fr
ID  - 10_4064_cm96_1_6
ER  - 
%0 Journal Article
%A Benoît Rittaud
%T Équidistribution presque partout modulo 1 de
 suites oscillantes perturbées – II :
 cas liouvillien unidimensionnel
%J Colloquium Mathematicum
%D 2003
%P 55-73
%V 96
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-6/
%R 10.4064/cm96-1-6
%G fr
%F 10_4064_cm96_1_6
Benoît Rittaud. Équidistribution presque partout modulo 1 de
 suites oscillantes perturbées – II :
 cas liouvillien unidimensionnel. Colloquium Mathematicum, Tome 96 (2003) no. 1, pp. 55-73. doi : 10.4064/cm96-1-6. http://geodesic.mathdoc.fr/articles/10.4064/cm96-1-6/

Cité par Sources :