Nonanalyticity of solutions to $\partial _{t}u=\partial _{x}^2u+u^2$
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 255-266
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
It is proved that the solution to the initial value problem $\partial _tu=\partial _x^2u+u^2$, $u(0,x)=1/(1+x^2)$, does not belong to the Gevrey class $G^s$ in time for $0\le s1$. The proof is based on an estimation of a double sum of products of binomial coefficients.
Keywords:
proved solution initial value problem partial partial does belong gevrey class time proof based estimation double sum products binomial coefficients
Affiliations des auteurs :
Grzegorz Łysik  1
@article{10_4064_cm95_2_9,
author = {Grzegorz {\L}ysik},
title = {Nonanalyticity of solutions to $\partial _{t}u=\partial _{x}^2u+u^2$},
journal = {Colloquium Mathematicum},
pages = {255--266},
year = {2003},
volume = {95},
number = {2},
doi = {10.4064/cm95-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-9/}
}
Grzegorz Łysik. Nonanalyticity of solutions to $\partial _{t}u=\partial _{x}^2u+u^2$. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 255-266. doi: 10.4064/cm95-2-9
Cité par Sources :