Groups with metamodular subgroup lattice
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 231-240.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

A group $G$ is called metamodular if for each subgroup $H$ of $G$ either the subgroup lattice ${{{\mathfrak L}}}(H)$ is modular or $H$ is a modular element of the lattice ${{{\mathfrak L}}}(G)$. Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.
DOI : 10.4064/cm95-2-7
Keywords: group called metamodular each subgroup either subgroup lattice mathfrak modular modular element lattice mathfrak metamodular groups appear natural lattice analogues groups which every non abelian subgroup normal these latter groups have studied romalis sesekin here their results extended metamodular groups

M. De Falco 1 ; F. de Giovanni 1 ; C. Musella 1 ; R. Schmidt 2

1 Dipartimento di Matematica e Applicazioni Università di Napoli via Cintia I-80126 Napoli, Italy
2 Mathematisches Seminar Universität Kiel Ludewig-Meyn-Str. 4 D-24098 Kiel, Germany
@article{10_4064_cm95_2_7,
     author = {M. De Falco and F. de Giovanni and C. Musella and R. Schmidt},
     title = {Groups with metamodular subgroup lattice},
     journal = {Colloquium Mathematicum},
     pages = {231--240},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2003},
     doi = {10.4064/cm95-2-7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-7/}
}
TY  - JOUR
AU  - M. De Falco
AU  - F. de Giovanni
AU  - C. Musella
AU  - R. Schmidt
TI  - Groups with metamodular subgroup lattice
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 231
EP  - 240
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-7/
DO  - 10.4064/cm95-2-7
LA  - en
ID  - 10_4064_cm95_2_7
ER  - 
%0 Journal Article
%A M. De Falco
%A F. de Giovanni
%A C. Musella
%A R. Schmidt
%T Groups with metamodular subgroup lattice
%J Colloquium Mathematicum
%D 2003
%P 231-240
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-7/
%R 10.4064/cm95-2-7
%G en
%F 10_4064_cm95_2_7
M. De Falco; F. de Giovanni; C. Musella; R. Schmidt. Groups with metamodular subgroup lattice. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 231-240. doi : 10.4064/cm95-2-7. http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-7/

Cité par Sources :