Affine and convex functions with respect to the logarithmic mean
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 217-230.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

The class of all functions $f:(0,\infty )\rightarrow (0,\infty )$ which are continuous at least at one point and affine with respect to the logarithmic mean is determined. Some related results concerning the functions convex with respect to the logarithmic mean are presented.
DOI : 10.4064/cm95-2-6
Keywords: class functions infty rightarrow infty which continuous least point affine respect logarithmic mean determined related results concerning functions convex respect logarithmic mean presented

Janusz Matkowski 1

1 Institute of Mathematics University of Zielona Góra Podgórna 50 65-246 Zielona Góra, Poland
@article{10_4064_cm95_2_6,
     author = {Janusz Matkowski},
     title = {Affine and convex functions
 with respect to the logarithmic mean},
     journal = {Colloquium Mathematicum},
     pages = {217--230},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2003},
     doi = {10.4064/cm95-2-6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-6/}
}
TY  - JOUR
AU  - Janusz Matkowski
TI  - Affine and convex functions
 with respect to the logarithmic mean
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 217
EP  - 230
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-6/
DO  - 10.4064/cm95-2-6
LA  - en
ID  - 10_4064_cm95_2_6
ER  - 
%0 Journal Article
%A Janusz Matkowski
%T Affine and convex functions
 with respect to the logarithmic mean
%J Colloquium Mathematicum
%D 2003
%P 217-230
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-6/
%R 10.4064/cm95-2-6
%G en
%F 10_4064_cm95_2_6
Janusz Matkowski. Affine and convex functions
 with respect to the logarithmic mean. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 217-230. doi : 10.4064/cm95-2-6. http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-6/

Cité par Sources :