Varieties of modules over tubular algebras
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 163-183.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify the irreducible components of varieties of modules over tubular algebras. Our results are stated in terms of root combinatorics. They can be applied to understand the varieties of modules over the preprojective algebras of Dynkin type ${\mathbb A}_5$ and ${\mathbb D}_4$.
DOI : 10.4064/cm95-2-2
Keywords: classify irreducible components varieties modules tubular algebras results stated terms root combinatorics applied understand varieties modules preprojective algebras dynkin type mathbb nbsp mathbb

Christof Geiss 1 ; Jan Schröer 2

1 Department of Pure Mathematics University of Leeds Leeds LS2 9JT, England
2 Instituto de Matemáticas, UNAM Ciudad Universitaria 04510 México, D.F., México
@article{10_4064_cm95_2_2,
     author = {Christof Geiss and Jan Schr\"oer},
     title = {Varieties of modules over tubular algebras},
     journal = {Colloquium Mathematicum},
     pages = {163--183},
     publisher = {mathdoc},
     volume = {95},
     number = {2},
     year = {2003},
     doi = {10.4064/cm95-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-2/}
}
TY  - JOUR
AU  - Christof Geiss
AU  - Jan Schröer
TI  - Varieties of modules over tubular algebras
JO  - Colloquium Mathematicum
PY  - 2003
SP  - 163
EP  - 183
VL  - 95
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-2/
DO  - 10.4064/cm95-2-2
LA  - en
ID  - 10_4064_cm95_2_2
ER  - 
%0 Journal Article
%A Christof Geiss
%A Jan Schröer
%T Varieties of modules over tubular algebras
%J Colloquium Mathematicum
%D 2003
%P 163-183
%V 95
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-2/
%R 10.4064/cm95-2-2
%G en
%F 10_4064_cm95_2_2
Christof Geiss; Jan Schröer. Varieties of modules over tubular algebras. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 163-183. doi : 10.4064/cm95-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-2/

Cité par Sources :