Varieties of modules over tubular algebras
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 163-183
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We classify the irreducible components of
varieties of modules over tubular algebras.
Our results are stated in terms of root combinatorics.
They can be applied to understand the varieties of modules over
the preprojective algebras of Dynkin type ${\mathbb A}_5$ and ${\mathbb D}_4$.
Keywords:
classify irreducible components varieties modules tubular algebras results stated terms root combinatorics applied understand varieties modules preprojective algebras dynkin type mathbb nbsp mathbb
Affiliations des auteurs :
Christof Geiss 1 ; Jan Schröer 2
@article{10_4064_cm95_2_2,
author = {Christof Geiss and Jan Schr\"oer},
title = {Varieties of modules over tubular algebras},
journal = {Colloquium Mathematicum},
pages = {163--183},
publisher = {mathdoc},
volume = {95},
number = {2},
year = {2003},
doi = {10.4064/cm95-2-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-2/}
}
Christof Geiss; Jan Schröer. Varieties of modules over tubular algebras. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 163-183. doi: 10.4064/cm95-2-2
Cité par Sources :