Estimates of Green functions and their applications
for parabolic operators with singular potentials
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 267-283
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We prove global pointwise estimates for the Green function of a parabolic operator with potential in the parabolic Kato class on a $C^{1,1}$ cylindrical domain ${\mit \Omega }$. We apply these estimates to obtain a new and shorter proof of the Harnack inequality [16], and to study the boundary behavior of nonnegative solutions.
Keywords:
prove global pointwise estimates green function parabolic operator potential parabolic kato class cylindrical domain mit omega apply these estimates obtain shorter proof harnack inequality study boundary behavior nonnegative solutions
Affiliations des auteurs :
Lotfi Riahi 1
@article{10_4064_cm95_2_10,
author = {Lotfi Riahi},
title = {Estimates of {Green} functions and their applications
for parabolic operators with singular potentials},
journal = {Colloquium Mathematicum},
pages = {267--283},
publisher = {mathdoc},
volume = {95},
number = {2},
year = {2003},
doi = {10.4064/cm95-2-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-10/}
}
TY - JOUR AU - Lotfi Riahi TI - Estimates of Green functions and their applications for parabolic operators with singular potentials JO - Colloquium Mathematicum PY - 2003 SP - 267 EP - 283 VL - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-10/ DO - 10.4064/cm95-2-10 LA - en ID - 10_4064_cm95_2_10 ER -
%0 Journal Article %A Lotfi Riahi %T Estimates of Green functions and their applications for parabolic operators with singular potentials %J Colloquium Mathematicum %D 2003 %P 267-283 %V 95 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-10/ %R 10.4064/cm95-2-10 %G en %F 10_4064_cm95_2_10
Lotfi Riahi. Estimates of Green functions and their applications for parabolic operators with singular potentials. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 267-283. doi: 10.4064/cm95-2-10
Cité par Sources :