An extension theorem
for a Matkowski–Sutô problem
Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 153-161
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $I$ be an interval, $0\lambda 1$ be a fixed constant and $A(x,y)=\lambda x+(1-\lambda ) y,\, x,y \in I,$ be the weighted arithmetic mean on $I$. A pair of strict means $M$ and $N$ is complementary with respect to $A$ if $A(M(x,y),N(x,y))=A(x,y)$ for all $x, y \in I.$ For such a pair we give results on the functional equation $f(M(x,y))=f(N(x,y)).$ The equation is motivated by and applied to the Matkowski–Sutô problem on complementary weighted quasi-arithmetic means $M$ and $N$.
Keywords:
interval lambda fixed constant lambda lambda weighted arithmetic mean pair strict means complementary respect y pair results functional equation y y equation motivated applied matkowski sut problem complementary weighted quasi arithmetic means
Affiliations des auteurs :
Zoltán Daróczy 1 ; Gabriella Hajdu 1 ; Che Tat Ng 2
@article{10_4064_cm95_2_1,
author = {Zolt\'an Dar\'oczy and Gabriella Hajdu and Che Tat Ng},
title = {An extension theorem
for a {Matkowski{\textendash}Sut\^o} problem},
journal = {Colloquium Mathematicum},
pages = {153--161},
publisher = {mathdoc},
volume = {95},
number = {2},
year = {2003},
doi = {10.4064/cm95-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-1/}
}
TY - JOUR AU - Zoltán Daróczy AU - Gabriella Hajdu AU - Che Tat Ng TI - An extension theorem for a Matkowski–Sutô problem JO - Colloquium Mathematicum PY - 2003 SP - 153 EP - 161 VL - 95 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm95-2-1/ DO - 10.4064/cm95-2-1 LA - en ID - 10_4064_cm95_2_1 ER -
Zoltán Daróczy; Gabriella Hajdu; Che Tat Ng. An extension theorem for a Matkowski–Sutô problem. Colloquium Mathematicum, Tome 95 (2003) no. 2, pp. 153-161. doi: 10.4064/cm95-2-1
Cité par Sources :