Additive functions
modulo a countable subgroup of ${\Bbb R}$
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 117-122
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We solve the mod $G$ Cauchy functional equation $$ f(x+y)=f(x)+f(y)\pmod G, $$ where $G$ is a countable subgroup of ${\mathbb R}$ and $f:{\mathbb R}\to {\mathbb R}$ is Borel measurable. We show that the only solutions are functions linear mod $G$.
Keywords:
solve mod cauchy functional equation pmod where countable subgroup mathbb mathbb mathbb borel measurable only solutions functions linear mod
Affiliations des auteurs :
Nikos Frantzikinakis  1
@article{10_4064_cm95_1_9,
author = {Nikos Frantzikinakis},
title = {Additive functions
modulo a countable subgroup of ${\Bbb R}$},
journal = {Colloquium Mathematicum},
pages = {117--122},
year = {2003},
volume = {95},
number = {1},
doi = {10.4064/cm95-1-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-9/}
}
Nikos Frantzikinakis. Additive functions
modulo a countable subgroup of ${\Bbb R}$. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 117-122. doi: 10.4064/cm95-1-9
Cité par Sources :