A note on rare maximal functions
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 49-51
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
A necessary and sufficient condition is given on the basis of a rare maximal function $M_{ l }$ such that $M_{ l }f \in L^{1}([0,1])$ implies $f \in L \log L([0,1])$.
Keywords:
necessary sufficient condition given basis rare maximal function implies log
Affiliations des auteurs :
Paul Alton Hagelstein 1
@article{10_4064_cm95_1_4,
author = {Paul Alton Hagelstein},
title = {A note on rare maximal functions},
journal = {Colloquium Mathematicum},
pages = {49--51},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2003},
doi = {10.4064/cm95-1-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-4/}
}
Paul Alton Hagelstein. A note on rare maximal functions. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 49-51. doi: 10.4064/cm95-1-4
Cité par Sources :