Cohen–Macaulayness of
multiplication rings and modules
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 133-138
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $R$ be a commutative multiplication ring and let $N$ be a non-zero finitely generated multiplication $R$-module. We characterize certain prime submodules of $N$. Also, we show that $N$ is Cohen–Macaulay whenever $R$ is Noetherian.
Keywords:
commutative multiplication ring non zero finitely generated multiplication r module characterize certain prime submodules cohen macaulay whenever noetherian
Affiliations des auteurs :
R. Naghipour 1 ; H. Zakeri 2 ; N. Zamani 3
@article{10_4064_cm95_1_11,
author = {R. Naghipour and H. Zakeri and N. Zamani},
title = {Cohen{\textendash}Macaulayness of
multiplication rings and modules},
journal = {Colloquium Mathematicum},
pages = {133--138},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2003},
doi = {10.4064/cm95-1-11},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-11/}
}
TY - JOUR AU - R. Naghipour AU - H. Zakeri AU - N. Zamani TI - Cohen–Macaulayness of multiplication rings and modules JO - Colloquium Mathematicum PY - 2003 SP - 133 EP - 138 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-11/ DO - 10.4064/cm95-1-11 LA - en ID - 10_4064_cm95_1_11 ER -
R. Naghipour; H. Zakeri; N. Zamani. Cohen–Macaulayness of multiplication rings and modules. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 133-138. doi: 10.4064/cm95-1-11
Cité par Sources :