Minimal nonhomogeneous continua
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 123-132
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that there are (1) nonhomogeneous metric continua that admit minimal noninvertible maps but have the fixed point property for homeomorphisms, and (2) nonhomogeneous metric continua that admit both minimal noninvertible maps and minimal homeomorphisms. The former continua are constructed as quotient spaces of the torus or as subsets of the torus, the latter are constructed as subsets of the torus.
Keywords:
there nonhomogeneous metric continua admit minimal noninvertible maps have fixed point property homeomorphisms nonhomogeneous metric continua admit minimal noninvertible maps minimal homeomorphisms former continua constructed quotient spaces torus subsets torus latter constructed subsets torus
Affiliations des auteurs :
Henk Bruin 1 ; Sergiǐ Kolyada 2 ; L'ubomír Snoha 3
@article{10_4064_cm95_1_10,
author = {Henk Bruin and Sergiǐ Kolyada and L'ubom{\'\i}r Snoha},
title = {Minimal nonhomogeneous continua},
journal = {Colloquium Mathematicum},
pages = {123--132},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2003},
doi = {10.4064/cm95-1-10},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-10/}
}
TY - JOUR AU - Henk Bruin AU - Sergiǐ Kolyada AU - L'ubomír Snoha TI - Minimal nonhomogeneous continua JO - Colloquium Mathematicum PY - 2003 SP - 123 EP - 132 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-10/ DO - 10.4064/cm95-1-10 LA - en ID - 10_4064_cm95_1_10 ER -
Henk Bruin; Sergiǐ Kolyada; L'ubomír Snoha. Minimal nonhomogeneous continua. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 123-132. doi: 10.4064/cm95-1-10
Cité par Sources :