Embedding proper homotopy types
Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 1-20
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We show that the proper homotopy type of any properly $c$-connected locally finite $n$-dimensional CW-complex is represented by a closed polyhedron in ${\mathbb R}^{2n-c}$ (Theorem I). The case $n-c\geq 3$ is a special case of a general proper homotopy embedding theorem (Theorem II). For $n-c\leq 2$ we need some basic properties of “proper" algebraic topology which are summarized in Appendices A and B. The results of this paper are the proper analogues of classical results by Stallings [17] and Wall [20] for finite CW-complexes; see also Dranišnikov and Repovš [7].
Keywords:
proper homotopy type properly c connected locally finite n dimensional cw complex represented closed polyhedron mathbb n c theorem n c geq special general proper homotopy embedding theorem theorem n c leq basic properties proper algebraic topology which summarized appendices results paper proper analogues classical results stallings wall finite cw complexes see drani nikov repov
Affiliations des auteurs :
M. Cárdenas 1 ; T. Fernández 1 ; F. F. Lasheras 1 ; A. Quintero 1
@article{10_4064_cm95_1_1,
author = {M. C\'ardenas and T. Fern\'andez and F. F. Lasheras and A. Quintero},
title = {Embedding proper homotopy types},
journal = {Colloquium Mathematicum},
pages = {1--20},
publisher = {mathdoc},
volume = {95},
number = {1},
year = {2003},
doi = {10.4064/cm95-1-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-1/}
}
TY - JOUR AU - M. Cárdenas AU - T. Fernández AU - F. F. Lasheras AU - A. Quintero TI - Embedding proper homotopy types JO - Colloquium Mathematicum PY - 2003 SP - 1 EP - 20 VL - 95 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm95-1-1/ DO - 10.4064/cm95-1-1 LA - en ID - 10_4064_cm95_1_1 ER -
M. Cárdenas; T. Fernández; F. F. Lasheras; A. Quintero. Embedding proper homotopy types. Colloquium Mathematicum, Tome 95 (2003) no. 1, pp. 1-20. doi: 10.4064/cm95-1-1
Cité par Sources :