A Note on L-sets
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 281-284.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Answering a question of Pisier, posed in [10], we construct an L-set which is not a finite union of translates of free sets.
DOI : 10.4064/cm94-2-9
Keywords: answering question pisier posed construct l set which finite union translates sets

Gero Fendler 1

1 Finstertal 16 D-69514 Laudenbach, Germany
@article{10_4064_cm94_2_9,
     author = {Gero Fendler},
     title = {A {Note} on {L-sets}},
     journal = {Colloquium Mathematicum},
     pages = {281--284},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2002},
     doi = {10.4064/cm94-2-9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-9/}
}
TY  - JOUR
AU  - Gero Fendler
TI  - A Note on L-sets
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 281
EP  - 284
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-9/
DO  - 10.4064/cm94-2-9
LA  - en
ID  - 10_4064_cm94_2_9
ER  - 
%0 Journal Article
%A Gero Fendler
%T A Note on L-sets
%J Colloquium Mathematicum
%D 2002
%P 281-284
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-9/
%R 10.4064/cm94-2-9
%G en
%F 10_4064_cm94_2_9
Gero Fendler. A Note on L-sets. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 281-284. doi : 10.4064/cm94-2-9. http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-9/

Cité par Sources :