The Young inequality and the ${\mit \Delta }_2$-condition
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 221-223
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
If $\varphi : [0,\infty )\to [0,\infty )$ is a convex function with $\varphi (0)=0$ and conjugate function $\varphi ^*$, the inequality $xy \le \varepsilon \varphi (x) + C_\varepsilon \ \varphi ^*(y)$ is shown to hold true for every $\varepsilon \in (0,\infty )$ if and only if $\varphi ^*$ satisfies the ${\mit \Delta }_2$-condition.
Keywords:
varphi infty infty convex function varphi conjugate function varphi * inequality varepsilon varphi varepsilon varphi * shown every varepsilon infty only varphi * satisfies mit delta condition
Affiliations des auteurs :
Philippe Laurençot 1
@article{10_4064_cm94_2_4,
author = {Philippe Lauren\c{c}ot},
title = {The {Young} inequality and the ${\mit \Delta }_2$-condition},
journal = {Colloquium Mathematicum},
pages = {221--223},
publisher = {mathdoc},
volume = {94},
number = {2},
year = {2002},
doi = {10.4064/cm94-2-4},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-4/}
}
Philippe Laurençot. The Young inequality and the ${\mit \Delta }_2$-condition. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 221-223. doi: 10.4064/cm94-2-4
Cité par Sources :