The Young inequality and the ${\mit \Delta }_2$-condition
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 221-223.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

If $\varphi : [0,\infty )\to [0,\infty )$ is a convex function with $\varphi (0)=0$ and conjugate function $\varphi ^*$, the inequality $xy \le \varepsilon \varphi (x) + C_\varepsilon \ \varphi ^*(y)$ is shown to hold true for every $\varepsilon \in (0,\infty )$ if and only if $\varphi ^*$ satisfies the ${\mit \Delta }_2$-condition.
DOI : 10.4064/cm94-2-4
Keywords: varphi infty infty convex function varphi conjugate function varphi * inequality varepsilon varphi varepsilon varphi * shown every varepsilon infty only varphi * satisfies mit delta condition

Philippe Laurençot 1

1 Mathématiques pour l'Industrie et la Physique CNRS UMR 5640 Université Paul Sabatier–Toulouse 3 118 route de Narbonne F-31062 Toulouse Cedex 4, France
@article{10_4064_cm94_2_4,
     author = {Philippe Lauren\c{c}ot},
     title = {The {Young} inequality and the ${\mit \Delta }_2$-condition},
     journal = {Colloquium Mathematicum},
     pages = {221--223},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2002},
     doi = {10.4064/cm94-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-4/}
}
TY  - JOUR
AU  - Philippe Laurençot
TI  - The Young inequality and the ${\mit \Delta }_2$-condition
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 221
EP  - 223
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-4/
DO  - 10.4064/cm94-2-4
LA  - en
ID  - 10_4064_cm94_2_4
ER  - 
%0 Journal Article
%A Philippe Laurençot
%T The Young inequality and the ${\mit \Delta }_2$-condition
%J Colloquium Mathematicum
%D 2002
%P 221-223
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-4/
%R 10.4064/cm94-2-4
%G en
%F 10_4064_cm94_2_4
Philippe Laurençot. The Young inequality and the ${\mit \Delta }_2$-condition. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 221-223. doi : 10.4064/cm94-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-4/

Cité par Sources :