Absence of global solutions to a class
of nonlinear parabolic inequalities
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 195-220
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We study the absence of nonnegative global solutions to parabolic
inequalities of the type $ u_t \geq -(-{\mit \Delta })^{{\beta /2}}
u - V(x)u + h(x,t) u^{p}$, where $ (-{\mit \Delta })^{{\beta /2}}$,
$0 \beta \leq 2 $, is the $ \beta /2 $ fractional power of the
Laplacian. We give a sufficient condition which implies that the
only global solution is trivial if $ p > 1 $ is small. Among other
properties, we derive a necessary condition for the existence of
local and global nonnegative solutions to the above problem for the
function $ V $ satisfying $ V_+(x)\sim a |
x| ^{-b}$, where $a \geq 0$, $b > 0$, $p > 1 $ and $ V_+(x):=
\max\{V(x),0\}$. We show that the existence of solutions depends on the
behavior at infinity of both initial data and $ h$.
In addition to our main results, we also discuss the nonexistence
of solutions for some degenerate parabolic inequalities like $ u_t \geq
{\mit \Delta } u^m + u^p $ and $ u_t \geq {\mit \Delta }_p u + h(x,t)u^p$.
The approach is based upon a duality argument combined with an appropriate
choice of a test function. First we obtain an a priori estimate and then we
use a scaling argument to prove our nonexistence results.
Keywords:
study absence nonnegative global solutions parabolic inequalities type geq mit delta beta where mit delta beta beta leq beta fractional power laplacian sufficient condition which implies only global solution trivial small among other properties derive necessary condition existence local global nonnegative solutions above problem function satisfying sim b where geq max existence solutions depends behavior infinity initial addition main results discuss nonexistence solutions degenerate parabolic inequalities geq mit delta geq mit delta u approach based duality argument combined appropriate choice test function first obtain priori estimate scaling argument prove nonexistence results
Affiliations des auteurs :
M. Guedda 1
@article{10_4064_cm94_2_3,
author = {M. Guedda},
title = {Absence of global solutions to a class
of nonlinear parabolic inequalities},
journal = {Colloquium Mathematicum},
pages = {195--220},
publisher = {mathdoc},
volume = {94},
number = {2},
year = {2002},
doi = {10.4064/cm94-2-3},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-3/}
}
TY - JOUR AU - M. Guedda TI - Absence of global solutions to a class of nonlinear parabolic inequalities JO - Colloquium Mathematicum PY - 2002 SP - 195 EP - 220 VL - 94 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-3/ DO - 10.4064/cm94-2-3 LA - en ID - 10_4064_cm94_2_3 ER -
M. Guedda. Absence of global solutions to a class of nonlinear parabolic inequalities. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 195-220. doi: 10.4064/cm94-2-3
Cité par Sources :