Selfinjective algebras of tubular type
Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 175-194.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We classify all tame self\/injective algebras having simply connected Galois coverings and the stable Auslander–Reiten quivers consisting of stable tubes. Moreover, the classification of nondomestic polynomial growth standard self\/injective algebras is completed.
DOI : 10.4064/cm94-2-2
Keywords: classify tame self injective algebras having simply connected galois coverings stable auslander reiten quivers consisting stable tubes moreover classification nondomestic polynomial growth standard self injective algebras completed

Jerzy Białkowski 1 ; Andrzej Skowroński 1

1 Faculty of Mathematics and Computer Science Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm94_2_2,
     author = {Jerzy Bia{\l}kowski and Andrzej Skowro\'nski},
     title = {Selfinjective algebras of tubular type},
     journal = {Colloquium Mathematicum},
     pages = {175--194},
     publisher = {mathdoc},
     volume = {94},
     number = {2},
     year = {2002},
     doi = {10.4064/cm94-2-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-2/}
}
TY  - JOUR
AU  - Jerzy Białkowski
AU  - Andrzej Skowroński
TI  - Selfinjective algebras of tubular type
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 175
EP  - 194
VL  - 94
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-2/
DO  - 10.4064/cm94-2-2
LA  - en
ID  - 10_4064_cm94_2_2
ER  - 
%0 Journal Article
%A Jerzy Białkowski
%A Andrzej Skowroński
%T Selfinjective algebras of tubular type
%J Colloquium Mathematicum
%D 2002
%P 175-194
%V 94
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-2/
%R 10.4064/cm94-2-2
%G en
%F 10_4064_cm94_2_2
Jerzy Białkowski; Andrzej Skowroński. Selfinjective algebras of tubular type. Colloquium Mathematicum, Tome 94 (2002) no. 2, pp. 175-194. doi : 10.4064/cm94-2-2. http://geodesic.mathdoc.fr/articles/10.4064/cm94-2-2/

Cité par Sources :