A transvection decomposition in ${\rm GL}(n,2)$
Colloquium Mathematicum, Tome 94 (2002) no. 1, pp. 51-60.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

An algorithm is given to decompose an automorphism of a finite vector space over ${\mathbb Z}_{2}$ into a product of transvections. The procedure uses partitions of the indexing set of a redundant base. With respect to tents, i.e. finite ${\mathbb Z}_{2}$-representations generated by a redundant base, this is a decomposition into base changes.
DOI : 10.4064/cm94-1-4
Mots-clés : algorithm given decompose automorphism finite vector space mathbb product transvections procedure uses partitions indexing set redundant base respect tents finite mathbb representations generated redundant base decomposition base changes

Clorinda De Vivo 1 ; Claudia Metelli 1

1 Dipartimento di Matematica e Applicazioni Università Federico II di Napoli 80126 Napoli, Italy
@article{10_4064_cm94_1_4,
     author = {Clorinda De Vivo and Claudia Metelli},
     title = {A transvection decomposition in ${\rm GL}(n,2)$},
     journal = {Colloquium Mathematicum},
     pages = {51--60},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2002},
     doi = {10.4064/cm94-1-4},
     language = {fr},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-4/}
}
TY  - JOUR
AU  - Clorinda De Vivo
AU  - Claudia Metelli
TI  - A transvection decomposition in ${\rm GL}(n,2)$
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 51
EP  - 60
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-4/
DO  - 10.4064/cm94-1-4
LA  - fr
ID  - 10_4064_cm94_1_4
ER  - 
%0 Journal Article
%A Clorinda De Vivo
%A Claudia Metelli
%T A transvection decomposition in ${\rm GL}(n,2)$
%J Colloquium Mathematicum
%D 2002
%P 51-60
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-4/
%R 10.4064/cm94-1-4
%G fr
%F 10_4064_cm94_1_4
Clorinda De Vivo; Claudia Metelli. A transvection decomposition in ${\rm GL}(n,2)$. Colloquium Mathematicum, Tome 94 (2002) no. 1, pp. 51-60. doi : 10.4064/cm94-1-4. http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-4/

Cité par Sources :