Spaces of multipliers and their preduals for
the order multiplication on $[0, 1]$
Colloquium Mathematicum, Tome 94 (2002) no. 1, pp. 21-36
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Let $I = [0, 1]$ be the compact topological semigroup with max multiplication and usual topology. $C(I)$, $L^p (I)$, $1 \leq p \le \infty $, are the associated Banach algebras. The aim of the paper is to characterise $\mathop {\rm Hom}\nolimits _{C(I)} (L^r (I), L^p (I))$ and their preduals.
Keywords:
compact topological semigroup max multiplication usual topology leq infty associated banach algebras the paper characterise mathop hom nolimits their preduals
Affiliations des auteurs :
Savita Bhatnagar 1 ; H. L. Vasudeva 1
@article{10_4064_cm94_1_2,
author = {Savita Bhatnagar and H. L. Vasudeva},
title = {Spaces of multipliers and their preduals for
the order multiplication on $[0, 1]$},
journal = {Colloquium Mathematicum},
pages = {21--36},
publisher = {mathdoc},
volume = {94},
number = {1},
year = {2002},
doi = {10.4064/cm94-1-2},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/}
}
TY - JOUR AU - Savita Bhatnagar AU - H. L. Vasudeva TI - Spaces of multipliers and their preduals for the order multiplication on $[0, 1]$ JO - Colloquium Mathematicum PY - 2002 SP - 21 EP - 36 VL - 94 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/ DO - 10.4064/cm94-1-2 LA - en ID - 10_4064_cm94_1_2 ER -
%0 Journal Article %A Savita Bhatnagar %A H. L. Vasudeva %T Spaces of multipliers and their preduals for the order multiplication on $[0, 1]$ %J Colloquium Mathematicum %D 2002 %P 21-36 %V 94 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/ %R 10.4064/cm94-1-2 %G en %F 10_4064_cm94_1_2
Savita Bhatnagar; H. L. Vasudeva. Spaces of multipliers and their preduals for the order multiplication on $[0, 1]$. Colloquium Mathematicum, Tome 94 (2002) no. 1, pp. 21-36. doi: 10.4064/cm94-1-2
Cité par Sources :