Spaces of multipliers and their preduals for the order multiplication on $[0, 1]$
Colloquium Mathematicum, Tome 94 (2002) no. 1, pp. 21-36.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Let $I = [0, 1]$ be the compact topological semigroup with max multiplication and usual topology. $C(I)$, $L^p (I)$, $1 \leq p \le \infty $, are the associated Banach algebras. The aim of the paper is to characterise $\mathop {\rm Hom}\nolimits _{C(I)} (L^r (I), L^p (I))$ and their preduals.
DOI : 10.4064/cm94-1-2
Keywords: compact topological semigroup max multiplication usual topology leq infty associated banach algebras the paper characterise mathop hom nolimits their preduals

Savita Bhatnagar 1 ; H. L. Vasudeva 1

1 Department of Mathematics Panjab University Chandigarh 160014, India
@article{10_4064_cm94_1_2,
     author = {Savita Bhatnagar and H. L. Vasudeva},
     title = {Spaces of multipliers and their preduals for
  the order multiplication on $[0, 1]$},
     journal = {Colloquium Mathematicum},
     pages = {21--36},
     publisher = {mathdoc},
     volume = {94},
     number = {1},
     year = {2002},
     doi = {10.4064/cm94-1-2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/}
}
TY  - JOUR
AU  - Savita Bhatnagar
AU  - H. L. Vasudeva
TI  - Spaces of multipliers and their preduals for
  the order multiplication on $[0, 1]$
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 21
EP  - 36
VL  - 94
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/
DO  - 10.4064/cm94-1-2
LA  - en
ID  - 10_4064_cm94_1_2
ER  - 
%0 Journal Article
%A Savita Bhatnagar
%A H. L. Vasudeva
%T Spaces of multipliers and their preduals for
  the order multiplication on $[0, 1]$
%J Colloquium Mathematicum
%D 2002
%P 21-36
%V 94
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/
%R 10.4064/cm94-1-2
%G en
%F 10_4064_cm94_1_2
Savita Bhatnagar; H. L. Vasudeva. Spaces of multipliers and their preduals for
  the order multiplication on $[0, 1]$. Colloquium Mathematicum, Tome 94 (2002) no. 1, pp. 21-36. doi : 10.4064/cm94-1-2. http://geodesic.mathdoc.fr/articles/10.4064/cm94-1-2/

Cité par Sources :