Exact ${\cal C}^{\infty }$ covering maps of the circle
without (weak) limit measure
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 295-302
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
We construct ${\cal C}^{\infty }$ maps $T$ on the interval and on the circle which are Lebesgue exact preserving an absolutely continuous infinite measure $\mu \ll \lambda $, such that for any probability measure $\nu \ll \lambda $ the sequence $(n^{-1}\sum _{k=0}^{n-1}\nu \circ T^{-k})_{n\geq 1}$ of arithmetical averages of image measures does not converge weakly.
Keywords:
construct cal infty maps interval circle which lebesgue exact preserving absolutely continuous infinite measure lambda probability measure lambda sequence sum n circ k geq arithmetical averages image measures does converge weakly
Affiliations des auteurs :
Roland Zweimüller 1
@article{10_4064_cm93_2_9,
author = {Roland Zweim\"uller},
title = {Exact ${\cal C}^{\infty }$ covering maps of the circle
without (weak) limit measure},
journal = {Colloquium Mathematicum},
pages = {295--302},
publisher = {mathdoc},
volume = {93},
number = {2},
year = {2002},
doi = {10.4064/cm93-2-9},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-9/}
}
TY - JOUR
AU - Roland Zweimüller
TI - Exact ${\cal C}^{\infty }$ covering maps of the circle
without (weak) limit measure
JO - Colloquium Mathematicum
PY - 2002
SP - 295
EP - 302
VL - 93
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-9/
DO - 10.4064/cm93-2-9
LA - en
ID - 10_4064_cm93_2_9
ER -
Roland Zweimüller. Exact ${\cal C}^{\infty }$ covering maps of the circle
without (weak) limit measure. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 295-302. doi: 10.4064/cm93-2-9
Cité par Sources :