Asymptotic behavior of a sequence defined
by iteration with applications
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 267-276
Cet article a éte moissonné depuis la source Institute of Mathematics Polish Academy of Sciences
We consider the asymptotic behavior of some classes of sequences defined by a recurrent formula. The main result is the following: Let $f:(0,\infty )^2\rightarrow (0,\infty )$ be a continuous function such that (a) $0 f(x,y) px+(1-p)y$ for some $p\in (0,1)$ and for all $x,y\in (0,\alpha )$, where $ \alpha >0$; (b) $f(x,y)=px+(1-p)y-\sum _{s=m}^{\infty }{\cal K}_s(x,y)$ uniformly in a neighborhood of the origin, where $m>1, $ ${\cal K}_s(x,y)=\sum _{i=0}^s a_{i,s}x^{s-i}y^i$;
(c) ${\cal K}_m(1,1)=\sum _{i=0}^m a_{i,m}>0$. Let $x_0,x_1\in (0,\alpha )$ and $ x_{n+1}=f(x_n,x_{n-1}),\ n\in {\mathbb N}.$ Then the sequence $(x_n)$ satisfies the following asymptotic formula:
$$ x_n\sim \left ({2-p\over (m-1) \sum _{i=0}^m a_{i,m}}\right )
^{{1}/{(m-1)}}{1\over\root{m-1}\of{n}}.$$
Keywords:
consider asymptotic behavior classes sequences defined recurrent formula main result following infty rightarrow infty continuous function nbsp p alpha where alpha nbsp p y sum infty cal uniformly neighborhood origin where cal sum s i nbsp cal sum alpha x n mathbb sequence satisfies following asymptotic formula sim p m sum right m root m
Affiliations des auteurs :
Stevo Stević 1
@article{10_4064_cm93_2_6,
author = {Stevo Stevi\'c},
title = {Asymptotic behavior of a sequence defined
by iteration with applications},
journal = {Colloquium Mathematicum},
pages = {267--276},
year = {2002},
volume = {93},
number = {2},
doi = {10.4064/cm93-2-6},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-6/}
}
Stevo Stević. Asymptotic behavior of a sequence defined by iteration with applications. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 267-276. doi: 10.4064/cm93-2-6
Cité par Sources :