Possibly there is no uniformly completely Ramsey null set of size $2^{\omega }$
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 251-258.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We show that under the axiom $\mathop {\rm CPA}\nolimits _{\rm cube}$ there is no uniformly completely Ramsey null set of size $2^{\omega }$. In particular, this holds in the iterated perfect set model. This answers a question of U. Darji.
DOI : 10.4064/cm93-2-4
Keywords: under axiom mathop cpa nolimits cube there uniformly completely ramsey null set size omega particular holds iterated perfect set model answers question darji

Andrzej Nowik 1

1 Institute of Mathematics University of Gdańsk Wita Stwosza 57 80-952 Gdańsk, Poland
@article{10_4064_cm93_2_4,
     author = {Andrzej Nowik},
     title = {Possibly there is no uniformly
  completely {Ramsey} null set of size $2^{\omega }$},
     journal = {Colloquium Mathematicum},
     pages = {251--258},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2002},
     doi = {10.4064/cm93-2-4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-4/}
}
TY  - JOUR
AU  - Andrzej Nowik
TI  - Possibly there is no uniformly
  completely Ramsey null set of size $2^{\omega }$
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 251
EP  - 258
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-4/
DO  - 10.4064/cm93-2-4
LA  - en
ID  - 10_4064_cm93_2_4
ER  - 
%0 Journal Article
%A Andrzej Nowik
%T Possibly there is no uniformly
  completely Ramsey null set of size $2^{\omega }$
%J Colloquium Mathematicum
%D 2002
%P 251-258
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-4/
%R 10.4064/cm93-2-4
%G en
%F 10_4064_cm93_2_4
Andrzej Nowik. Possibly there is no uniformly
  completely Ramsey null set of size $2^{\omega }$. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 251-258. doi : 10.4064/cm93-2-4. http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-4/

Cité par Sources :