Representation-directed algebras form an open scheme
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 237-250.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

We apply van den Dries's test to the class of algebras (over algebraically closed fields) which are not representation-directed and prove that this class is axiomatizable by a positive quantifier-free formula. It follows that the representation-directed algebras form an open ${{\mathbb Z}}$-scheme.
DOI : 10.4064/cm93-2-3
Keywords: apply van den driess test class algebras algebraically closed fields which representation directed prove class axiomatizable positive quantifier free formula follows representation directed algebras form mathbb scheme

Stanislaw Kasjan 1

1 Faculty of Mathematics and Computer Science Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm93_2_3,
     author = {Stanislaw Kasjan},
     title = {Representation-directed algebras
 form an open scheme},
     journal = {Colloquium Mathematicum},
     pages = {237--250},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2002},
     doi = {10.4064/cm93-2-3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-3/}
}
TY  - JOUR
AU  - Stanislaw Kasjan
TI  - Representation-directed algebras
 form an open scheme
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 237
EP  - 250
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-3/
DO  - 10.4064/cm93-2-3
LA  - en
ID  - 10_4064_cm93_2_3
ER  - 
%0 Journal Article
%A Stanislaw Kasjan
%T Representation-directed algebras
 form an open scheme
%J Colloquium Mathematicum
%D 2002
%P 237-250
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-3/
%R 10.4064/cm93-2-3
%G en
%F 10_4064_cm93_2_3
Stanislaw Kasjan. Representation-directed algebras
 form an open scheme. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 237-250. doi : 10.4064/cm93-2-3. http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-3/

Cité par Sources :