Sincere posets of finite prinjective type
with three maximal elements and their
sincere prinjective representations
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 155-208
Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences
Assume that $K$ is an~arbitrary
field. Let $(I,\, \preceq )$ be a poset of finite prinjective type
and let $KI$ be the incidence $K$-algebra of $I$. A~classification
of all sincere posets of finite prinjective type with three
maximal elements is given in Theorem~2.1. A~complete list of such
posets consisting of 90 diagrams is presented in Tables 2.2.
Moreover, given any sincere poset $I$ of finite prinjective type
with three maximal elements, a~complete set of pairwise
non-isomorphic sincere indecomposable prinjective modules over
$KI$ is presented in Tables~8.1. The list consists of 723
modules.
Keywords:
assume arbitrary field preceq poset finite prinjective type incidence k algebra classification sincere posets finite prinjective type three maximal elements given theorem complete list posets consisting diagrams presented tables moreover given sincere poset finite prinjective type three maximal elements complete set pairwise non isomorphic sincere indecomposable prinjective modules presented tables list consists modules
Affiliations des auteurs :
Justyna Kosakowska 1
@article{10_4064_cm93_2_1,
author = {Justyna Kosakowska},
title = {Sincere posets of finite prinjective type
with three maximal elements and their
sincere prinjective representations},
journal = {Colloquium Mathematicum},
pages = {155--208},
publisher = {mathdoc},
volume = {93},
number = {2},
year = {2002},
doi = {10.4064/cm93-2-1},
language = {en},
url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/}
}
TY - JOUR AU - Justyna Kosakowska TI - Sincere posets of finite prinjective type with three maximal elements and their sincere prinjective representations JO - Colloquium Mathematicum PY - 2002 SP - 155 EP - 208 VL - 93 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/ DO - 10.4064/cm93-2-1 LA - en ID - 10_4064_cm93_2_1 ER -
%0 Journal Article %A Justyna Kosakowska %T Sincere posets of finite prinjective type with three maximal elements and their sincere prinjective representations %J Colloquium Mathematicum %D 2002 %P 155-208 %V 93 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/ %R 10.4064/cm93-2-1 %G en %F 10_4064_cm93_2_1
Justyna Kosakowska. Sincere posets of finite prinjective type with three maximal elements and their sincere prinjective representations. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 155-208. doi: 10.4064/cm93-2-1
Cité par Sources :