Sincere posets of finite prinjective type with three maximal elements and their sincere prinjective representations
Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 155-208.

Voir la notice de l'article provenant de la source Institute of Mathematics Polish Academy of Sciences

Assume that $K$ is an~arbitrary field. Let $(I,\, \preceq )$ be a poset of finite prinjective type and let $KI$ be the incidence $K$-algebra of $I$. A~classification of all sincere posets of finite prinjective type with three maximal elements is given in Theorem~2.1. A~complete list of such posets consisting of 90 diagrams is presented in Tables 2.2. Moreover, given any sincere poset $I$ of finite prinjective type with three maximal elements, a~complete set of pairwise non-isomorphic sincere indecomposable prinjective modules over $KI$ is presented in Tables~8.1. The list consists of 723 modules.
DOI : 10.4064/cm93-2-1
Keywords: assume arbitrary field preceq poset finite prinjective type incidence k algebra classification sincere posets finite prinjective type three maximal elements given theorem complete list posets consisting diagrams presented tables moreover given sincere poset finite prinjective type three maximal elements complete set pairwise non isomorphic sincere indecomposable prinjective modules presented tables list consists modules

Justyna Kosakowska 1

1 Faculty of Mathematics and Computer Science Nicholas Copernicus University Chopina 12/18 87-100 Toruń, Poland
@article{10_4064_cm93_2_1,
     author = {Justyna Kosakowska},
     title = {Sincere posets of finite prinjective type
with three maximal elements and their
sincere prinjective representations},
     journal = {Colloquium Mathematicum},
     pages = {155--208},
     publisher = {mathdoc},
     volume = {93},
     number = {2},
     year = {2002},
     doi = {10.4064/cm93-2-1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/}
}
TY  - JOUR
AU  - Justyna Kosakowska
TI  - Sincere posets of finite prinjective type
with three maximal elements and their
sincere prinjective representations
JO  - Colloquium Mathematicum
PY  - 2002
SP  - 155
EP  - 208
VL  - 93
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/
DO  - 10.4064/cm93-2-1
LA  - en
ID  - 10_4064_cm93_2_1
ER  - 
%0 Journal Article
%A Justyna Kosakowska
%T Sincere posets of finite prinjective type
with three maximal elements and their
sincere prinjective representations
%J Colloquium Mathematicum
%D 2002
%P 155-208
%V 93
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/
%R 10.4064/cm93-2-1
%G en
%F 10_4064_cm93_2_1
Justyna Kosakowska. Sincere posets of finite prinjective type
with three maximal elements and their
sincere prinjective representations. Colloquium Mathematicum, Tome 93 (2002) no. 2, pp. 155-208. doi : 10.4064/cm93-2-1. http://geodesic.mathdoc.fr/articles/10.4064/cm93-2-1/

Cité par Sources :